SIEMENS

 $ACVATIX^{TM}$

Stetige Kältemittelventile MVL661..-.. mit Magnetantrieb, PS45

hermetisch dicht, für Sicherheitskältemittel

- Expansions-, Heissgas- und Sauggasapplikationen mit einem Ventiltyp
- · Hermetisch dicht gegen aussen
- Wählbare Standardschnittstelle DC 0/2...10 V oder DC 0/4...20 mA
- Hohe Auflösung und Regelgenauigkeit
- Präzise Stellungsregelung mit Stellungsrückmeldung
- Kurze Stellzeit (< 1 s)
- Stromlos geschlossen
- Robust und wartungsfrei
- Sechs Baugrössen mit k_{vs}-Werten von 0,25...12 m³/h

Anwendung

Das Kälteventil MVL661..-.. ist verwendbar zur stetigen Regelung von Kältekreisläufen, inklusive Kaltwassersätze und Wärmepumpen. Es wird in Expansions-, Heissgas- und Saugdrosselapplikationen eingesetzt. Das MVL661..-.. Kälteventil eignet sich für alle gebräuchlichen Sicherheitskältemittel (R22, R134a, R227ea, R404A, R407C, R410A usw.) sowie R744 (CO₂).

Тур	DN	k _{vs} [m³/h]	k _{vs} reduziert ¹⁾ [m ³ /h]	Δp _{max} [MPa]	Q ₀ E [kW]	Q ₀ H [kW]	Q ₀ D [kW]
MVL661.15-0.4	15	0,40			47	9,2	1,7
WIV LOG 1. 13-U.4	15		0,25		29	5,7	1,0
MVL661.15-1.0	15	1,0			117	23	4,2
WIV LOG 1. 13-1.0	15		0,63	0.5	74	14	2,6
MVL661.20-2.5	20	2,5		2,5	293	57	10
WV L001.20-2.5			1,6		187	37	6,6
MV/I CC4 OF C O	0.5	6,3			737	144	26
MVL661.25-6.3	25		4		468	92	17
MV// CC4 20 40	00	10		1,6	1170	230	42
MVL661.32-10	32		6,3		740	140	26
MV// CC4 20 40	20	12		0.0	2)	2)	50
MVL661.32-12	32		8	0,2	2)	2)	33

- 1) 63 % von k_{vs}, siehe «k_{vs}-Reduktion» Seite 4
- MVL661.32-12 ist nur für Saugdrosselapplikationen zugelassen
- Durchfluss-Nennwert des Kältemittels durch das voll geöffnete Ventil (H₁₀₀) bei einem Differenzdruck von 100 kPa (1 bar), nach VDI 2173
- Q₀ E Kälteleistung bei Expansionsapplikationen
- Q₀ H Kälteleistung bei Heissgasbypassapplikationen
- Q_0 D Kälteleistung bei Saugdrosselapplikationen und $\Delta p = 0.5$ bar
- Mit R407C bei $t_0 = 0$ °C und $t_c = 40$ °C

Der Druckabfall im Verdampfer und Kondensator wurde auf je 0,3 bar, sowie vor dem Verdampfer (z.B. Spinne) auf 1,6 bar festgelegt.

Die angegebenen Leistungen basieren auf einer Überhitzung von 6 K und einer Unterkühlung von 2 K.

Mit den Korrekturtabellen ab Seite 15 können die Leistungen für verschiedene Kältemittel und Betriebsbedingungen für alle drei Applikationen berechnet werden. Für eine genaue Dimensionierung empfiehlt sich die Selektionssoftware «Refrigeration VASP».

Zubehör

PTC-Kontaktheizelement ASR70

ASR70 erweitert den Anwendungsbereich der Ventile für Kältemitteltemperaturen am Ventileintritt von unter 0° C. Typische Anwendungen sind z.B. Ammoniak- oder CO₂-Kälteanlagen mit Pumpenumlauf.

Die Montage erfolgt direkt auf das Kältemittelventil ohne Einstellarbeiten

Detaillierte Angaben unter Datenblatt A6V11858863. Dem PTC-Kontaktheizelement liegt die Montageanleitung A6V11858868 bei.

Bestellung

Der Ventilkörper und der magnetische Stellantrieb bilden eine konstruktive Einheit und können nicht getrennt werden.

Beispiel:	Тур	Artikelnummer	Bezeichnung	
	MVL661.15-0.4	MVL661.15-0.4	Kältemittelventil	

Ersatzteile Bei einem Defekt der Ventilelektronik ist das Anschlussgehäuse durch das Ersatzteil

ASR61 einfach auszutauschen.

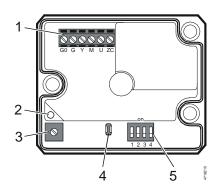
Der Ersatzelektronik liegt die Montageanleitung 74 319 0270 0 bei.

Rev.-Nr. Siehe Tabelle Seite 20.

2/20

Merkmale und Vorteile

- Vier wählbare Standardsignale für Soll- und Istwert
- Mit DIP-Schalter einstellbare k_{vs}-Reduktion auf 63 % des Nennwertes
- Mit Potentiometer einstellbarer Minimalhub für Saugdrosselanwendung
- Autokalibrierung des Hubes
- Zwangssteuereingang Ventil geschlossen oder voll geöffnet
- · Leuchtdiode zeigt Betriebszustand an

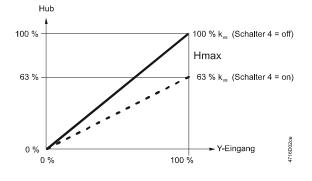

Ansteuerung

Das MVL661..-.. Kältemittelventil kann mit Siemens- oder Fremdreglern angesteuert werden, die über ein DC 0/2...10 V- oder DC 0/4...20 mA-Ausgangssignal verfügen. Um eine optimale Regelgüte zu erreichen, wird empfohlen, das Ventil mit vier Leitern zu verdrahten. Bei DC-Speisung **muss** mit vier Leitern verdrahtet werden! Der Ventilhub ist proportional zum Stellsignal.

Notstellfunktion

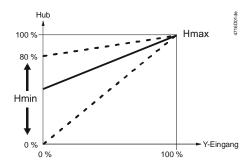
Bei Unterbruch des Stellsignals oder der Betriebsspannung wird der Regelpfad $A \to AB$ durch die Federkraft automatisch geschlossen.

Bedien- und Anzeige-Elemente im Elektronik-Gehäuse


- 1 Anschlussklemmen
- 2 Betriebsstatus-Anzeige LED
- 3 Minimalhubeinstellung Potentiometer Rv
- 4 Autokalibrierung
- 5 DIL-Schalter für Mode Control

Konfiguration DIL-Schalter

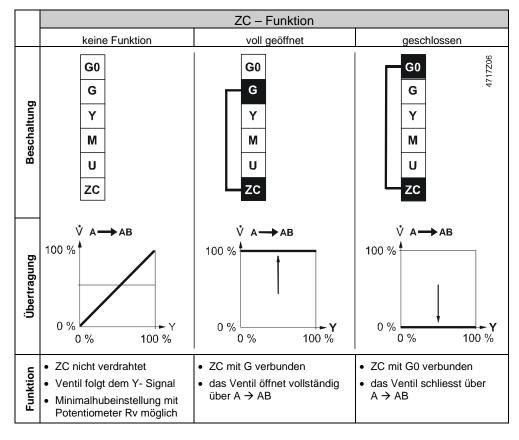
Schalter	Funktion	ON / OFF	Bezeichnung
ON S	Stellsignal Y	ON	Strom [mA]
1	Stellsighal 1	OFF	Spannung [V] 1)
ON SZ	Stellbereich Y und U	ON	DC 210 V, 420 mA
2	Stellbereich i und 0	OFF	DC 010 V, 020 mA ¹⁾
ON S	Stellungsrückmeldung U	ON	Strom [mA]
3	Stellangsrackmelaang o	OFF	Spannung [V] 1)
ON 90274747	Durchfluss-Nennwert k _{vs}	ON	63 %
	Duiciliuss-Neilliweit K _{vs}	OFF	100 % ¹⁾


) Werkseinstellung

k_{vs}-Reduktion

Bei eingeschalteter k_{vs} - Reduktion (DIL-Schalter 4 in Position on) wird der Hub auf 63 % begrenzt. 63 % mechanischer Hub entsprechen dann 10 V Ein- und Ausgangssignal. Wird zusätzlich die Mindestöffnung z.B. auf 80 % eingestellt, beträgt sie 0,63 x 0,80 = 0,50 des mechanischen Hubs.

Mindestöffnung mit Minimalhubeinstellung


Ausreichende Kompressorkühlung und Ölrückführung kann durch ein Nachspritzventil mit Heissgasregler, eine Bypassleitung über dem Ventil oder durch eine Mindestöffnung am Saugdrosselventil bewerkstelligt werden. Die Mindestöffnung kann über den Regler und das Y-Signal oder direkt über die Ventilelektronik mit dem Potentiometer Rv vorgegeben werden.

Die **Werkseinstellung** ist Null (Anschlag Gegenuhrzeigersinn CCW). Der Minimalhub lässt sich durch Drehen im Uhrzeigersinn bis auf maximal 80 % k_{vs} einstellen.

Vorsicht △

Bei Expansionsanwendungen darf am Potentiometer Rv kein Mindesthub eingestellt sein. Das Ventil muss voll geschlossen werden können!

Zwangssteuerung ZC

Signalpriorität

- 1. Zwangssteuereingang ZC
- 2. Signaleingang Y und/oder Minimalhubeinstellung mit Potentiometer Rv

Kalibrierung

Das MVL661..-.. hat in der Elektronikplatine einen Schlitz.

Werden die beiden auf der Innenseite liegenden Kontakte kurzgeschlossen (z.B. mit einem Schraubendreher), so wird die Kalibrierung ausgelöst. Dabei wird das Ventil erst geschlossen, dann ganz geöffnet.

Die Kalibrierung stimmt die Elektronik mit der Mechanik des Ventils ab. Während der Kalibrierung blinkt die grüne LED zirka 10 Sekunden; siehe auch "Betriebsstatus-Anzeige" (Seite 5).

Das MVL661..-.. Kälteventil wird in kalibriertem Zustand ausgeliefert.

Wann ist eine Kalibrierung nötig?

Diese muss nach dem Austauschen der Elektronik, bei roter LED-Anzeige oder undichtem Ventil (am Sitz) durchgeführt werden.

Betriebsstatus-Anzeige

LED	Anzeige		Funktion	Bemerkung, Massnahme
Grün	Leuchtet		Regelbetrieb	Automatischer Betrieb; alles in Ordnung
	Blinkt	-)•(-	Kalibrierung in Arbeit	Warten bis Kalibrierung beendet (LED leuchtet dann grün oder rot)
Rot	Leuchtet	->	Kalibrierungsfehler	Kalibrierung neu starten (Kalibrierungsschlitz kurzschliessen)
			Interner Fehler	Elektronik ersetzen
	Blinkt	-)•[-	Netzfehler	Netz überprüfen (ausserhalb Frequenz- oder Spannungsbereich)
Beide	Dunkel	0	Keine Speisung	Netz überprüfen, Verdrahtung kontrollieren
			Elektronik defekt	Elektronik ersetzen

Anschlussart 1)

Der 4-Draht-Anschluss ist generell zu bevorzugen!

4-Draht-Anschluss
3-Draht-Anschluss

	S _{NA}	P _{MED}	S _{TR}	P _{TR}	I _F	Leitungsquerschnitt [mm²]		
						1,5 2,5 4		4,0 ²⁾
Тур	[VA]	[W]	[VA]	[W]	[A]	max. Leitungslänge L [m]		e L [m]
MVL661	32	12	≥50	≥40	1,64 A	65	110	160
MVL661	32	12	≥50	≥40	1,64 A	20	35	50

S_{NA} = Nominale Scheinleistung

 P_{MED} = Typische Leistungsaufnahme in der Applikation S_{TR} = Minimale Scheinleistung des Transformators

P_{TR} = Minimale Leistung der DC Speisung I_F = Minimale erforderliche träge Sicherung

 Maximale Leitungslänge. Für den 4-Draht-Anschluss ist bei 1,5 mm² Cu eine maximale Länge der separaten Stellsignalleitung bis 200 m möglich.

- 1) Alle Angaben bei AC 24 V oder DC 24V Speisung
- 2) Bei Installationen mit 4 mm² sind die Leitungsquerschnitte für den Anschluss im Ventil auf 2,5 mm² zu reduzieren.

Auslegung

Für die Schnellauslegung der Ventile dienen die Tabellen für die entsprechende Applikation (siehe ab Seite 12).

Für eine genaue Dimensionierung empfiehlt sich die Selektionssoftware «Refrigeration VASP» zu verwenden. Erhältlich von ihrer lokalen Siemens Vertretung.

Hinweise

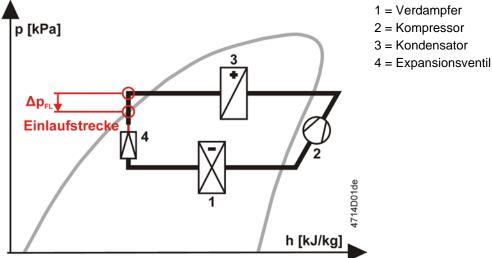
Die Kälteleistung Q_0 ergibt sich durch Multiplizierung des Massenstroms mit der spezifischen Enthalpiedifferenz aus dem h, log p-Diagramm des entsprechenden Kältemittels. Um die Kälteleistung einfacher zu bestimmen, besteht zu jeder Applikation eine Auslegungstabelle (siehe ab Seite 12). Beim direkten/indirekten Heissgasbypass muss die Enthalpiedifferenz von Q_c (Kondensatorleistung) für die Kälteleistung herangezogen werden.

Liegen die Verdampfungs- und/oder Kondensationstemperaturen zwischen den Tabellenwerten, so kann durch lineare Interpolation eine genügend genaue Kälteleistung errechnet werden (siehe Applikationsbeispiele ab Seite 12).

Der zulässige Differenzdruck Δp_{max} der jeweiligen Ventile wird in den Tabellen nicht berücksichtigt.

Eine Erhöhung der Verdampfungstemperatur um 1 K bringt eine Steigerung der Kälteleistung von ca. 3 %. Wird hingegen die Unterkühlung um 1 K vergrössert, so bewirkt dies eine Kälteleistungssteigerung von ca. 1...2 % (gilt nur bis zu einer Unterkühlung von ca. 8 K).

Je nach Applikation sind zusätzliche Installationshinweise zu beachten und die entsprechenden Sicherheitselemente (z.B. Pressostate, Motorenvollschutz) einzusetzen.


Warnung 🛆

Um die Dichtung im Ventileinsatz nicht zu beschädigen, ist nach der Druckprobe der Anlage die Entlüftung auf der Niederdruckseite (Anschluss AB des Ventils) vorzunehmen, oder das Ventil muss während der Druckprobe und beim Entlüften ganz offen sein (Betriebsspannung angeschlossen und Stellsignal auf Maximum bzw. Zwangsöffnung durch $G \to ZC$).

Expansionsapplikation

Um Dampfbildung (Flashgas) in Expansionsanwendungen zu vermeiden, darf die Geschwindigkeit des Kältemittels in der Flüssigkeitsleitung 1 m/s nicht überschreiten. Um dies sicherzustellen, muss die Flüssigkeitsleitung grösser als die Ventilnennweite gewählt und mittels Reduktionen an das Ventil angeschlossen werden.


Planungshinweise

- a) Der Differenzdruck über der Reduktion muss kleiner als die Hälfte des Differenzdrucks Δp_{FL} sein.
- b) Die Einlaufstrecke zwischen der Durchmesser-Reduktion und dem Eintritt des Expansionsventils
 - muss gerade und mindestens 600 mm lang sein
 - darf keine Armaturen enthalten

Vor dem Expansionsventil muss ein Filter/Trockner montiert werden. Das Ventil ist nicht explosionsgeschützt. Es ist nicht zugelassen für Ammoniak (NH3, R717).

Der Einbau und die Inbetriebnahme des Ventils sowie die Montage der Ersatzelektronik sollten ebenso von qualifiziertem Personal ausgeführt werden wie die Konfiguration des Reglers (z.B. SAPHIR oder PolyCool).

- Die Kältemittelventile können in einer beliebigen Lage, am besten jedoch stehend, montiert werden.
- Die Verrohrung soll so angelegt werden, dass sich das Ventil nicht in einem tiefen Punkt der Anlage befindet, wo sich Öl ansammeln kann.
- Leitungsrohre sind so zu befestigen, dass sie die Anschluss-Stutzen des Ventils nicht belasten. Der Ventilkörper muss so befestigt werden, dass er nicht schwingen kann. Ansonsten besteht für das Anschlussrohr Bruchgefahr.
- Vor dem Einlöten der Rohrleitungen ist das Ventil auf die richtige Durchflussrichtung zu kontrollieren.
- Das Einlöten der Rohrleitungen hat sorgfältig zu geschehen. Um Verschmutzung und Bildung von Zunder zu vermeiden, empfiehlt es sich, mit Schutzgas zu löten.
- Es ist ein genügend grosser Brenner zu verwenden, damit sich die Lötstelle schnell erhitzt und sich der Ventilkörper nicht unzulässig erwärmt.
- Die Brennerflamme ist vom Ventilkörper weg zu richten.
- Der Ventilkörper darf sich beim Löten nicht überhitzen. Er kann z. B. mit einem nassen Tuch gekühlt werden.
- Der Ventilkörper und die wegführenden Leitungen sollten isoliert werden.
- Der Stellantrieb darf nicht durch die Isolation umhüllt werden.

Dem Kälteventil liegt die Montageanleitung 74 319 0232 0 bei.

Wartung

Das Kälteventil ist wartungsfrei.

Reparatur

Das Ventil lässt sich nicht reparieren. Es muss als ganze Einheit ersetzt werden.

Entsorgung

Gemäss Europäischer Richtlinie gilt das Ventil bei der Entsorgung als Elektro- und Elektronik-Altgerät und darf nicht als Haushaltsmüll entsorgt werden.

- Entsorgen Sie das Ventil über die dazu vorgesehenen Kanäle.
- Beachten Sie die örtliche und aktuell gültige Gesetzgebung.

Gewährleistung

Die anwendungsbezogenen technischen Daten müssen eingehalten werden. Bei deren Überschreitung erlischt jegliche Gewährleistung durch Siemens.

Funktionsdaten Ar	ntrieb			
Speisung		Nur mit Schutzkleinspannung zugela	assen	(SELV, PELV)
•	AC 24 V	Betriebsspannung		AC 24 V ±20% (SELV) oder
				AC 24 V class 2 (US)
		Frequenz		4565 Hz
		Typische Leistungsaufnahme P _{med}		12 W
		Sta	nd by	< 1 W (Ventil geschlossen)
		Nominale Scheinleistung S _{NA}		32 VA (zur Transformatorwahl)
		Erforderliche Sicherung		1,64 A (träge)
		Externe Absicherung der Zuleitung		Schmelzsicherung max. 10 A träge
				oder
				Leitungsschutzschalter max. 13 A
				Auslösecharakteristik B, C, D nach EN 60898
				oder
				Stromversorgung mit Strombegrenzung von max.
				10 A
•	DC 24 V	Betriebsspannung		DC 2030 V
		Stromaufnahme		0,5 A / 2 A (maximal)
Signaleingänge		Stellsignal Y		DC 0/210 V oder DC 0/420 mA
		Impedanz DC 0/210 V		100 kΩ // 5nF
		DC 0/420 mA		240 Ω // 5nF
		Zwangssteuerung ZC		2010
		Eingangsimpedanz		22 kΩ
		Ventil schliessen (ZC mit G0 verbinden)		< AC 1 V; < DC 0,8 V
		Ventil öffnen (ZC mit G verbinden))	> AC 6 V; > DC 5 V
		keine Funktion (ZC nicht verdrahte	et)	Stellsignal Y wirksam
Signalausgänge		Stellungsrückmeldung U Spani Strom	-	DC 0/210 V; Lastwiderstand \geq 500 Ω DC 0/420 mA; Lastwiderstand \leq 500 Ω
		Hub-Erfassung		Induktiv
		Nichtlinearität		± 3 % vom Endwert
Stellzeit		Stellzeit		< 1 s
Elektrische Anschlü	üsse	Kabeleinführungen		3 x Ø 17 mm (für M16)
		Minimaler Leitungsquerschnitt		0,75 mm ²
		Maximale Leitungslänge		siehe «Anschlussart», Seite 5
Funktionsdaten Ve	entil	Zulässiger Betriebsdruck		max. 4,5 MPa (45 bar) 1)
		Maximaler Differenzdruck Δp_{max}		2,5 MPa (25 bar)
				MVL661.32-10: 1,6 MPa (16 bar)
				MVL661.32-12: 200 kPa (2 bar)
		Ventilkennlinie (Hub, k _v)		linear (nach VDI / VDE 2173)
		Leckrate (intern über Sitz)		max. 0,002 % k _{vs} bzw.
				max. 1 NI/h Gas bei ∆p = 4 bar
				Absperrfunktion (wie Magnetventile)
		Dichtheit gegen aussen		hermetisch dicht! (voll verschweisst, keine
				statischen oder dynamischen Dichtungen)
		Zulässige Medien		für übliche Sicherheitskältemittel (R22, R134a,
				R227ea, R404A, R407C, R410A, R422D usw.)
				sowie R744 (CO ₂).
				Nicht verwendbar für Ammoniak (R717)
		Mediumstemperatur:		
		Kältemittelausgang		-40120 °C; max. 140 °C für 10 min; ohne ASR70
		Kältemitteleingar		1120°C; max. 140°C für 10min; ohne ASR70
		Kältemitteleingar	ng (A)	-400°C mit ASR70 ⁶⁾

Hubauflösung ∆H / H100	1 : 1000 (H = Hub)
Hysterese	typisch 3 %
Arbeitsweise	stetig
Stellung wenn Antrieb stromlos	Regelpfad A → AB geschlossen
Einbaulage	stehend bis liegend 2)
Gehäuseteile	Stahl / CrNi-Stahl
Sitz / Kolben	CrNi-Stahl / Messing
Dichtscheibe	PTFE
Muffen	innenlötend, CrNi-Stahl
Abmessungen	siehe «Massbild», Seite 11
Gewicht	siehe «Massbild», Seite 11
Elektromagnetische Verträglichkeit	Für Wohn-, Geschäfts- und Gewerbeumgebung
(Einsatzbereich)	
Produktnorm	EN60730-x
EU-Konformität (CE)	CA2T4714xx ³⁾
RCM Konformität	A5W00004451 ³⁾
EAC Konformität	Eurasien Konformität für alle MVL
Schutzklasse	Klasse III nach EN 60730
Verschmutzungsgrad	Grad 2 nach EN 60730
Gehäuseschutzart	
Stehend bis liegend	IP65 nach EN 60529 2)
Vibration 4)	EN 60068-2-6
	5 g Beschleunigung, 10150 Hz, 2,5 h
	(5 g liegend, max. 2 g stehend montiert)
UL Zertifizierung (US)	UL 873, http://ul.com/database
CSA Zertifizierung	C22.2 No. 24, http://csagroup.org
Umweltverträglichkeit	Die Produktumweltdeklarationen
	CA2E4714.1en ³⁾ , CA2E4714.2en ³⁾ und
	CA2E4714.3en 3) enthalten Daten zur
	umweltverträglichen Gestaltung und
	Bewertung (RoHS-Konformität, stoffliche
	Zusammensetzung, Verpackung,
	Umweltnutzung und Entsorgung).
Druckgeräterichtlinie	DRG 2014/68/EU
Drucktragende Ausrüstungsteile	Bereich: Artikel1, Absatz 1
	Definition: Artikel 2, Absatz 5

¹⁾ Nach EN 12284 mit 1,43 x Betriebsdruck geprüft bei 65 bar

DN 15...32

Fluidgruppe 2:

Fluidgruppe 1 ⁵⁾: DN 15...25

ohne CE-Zertifizierung gemäss Artikel 4,

Absatz 3 (gute Ingenieurpraxis)

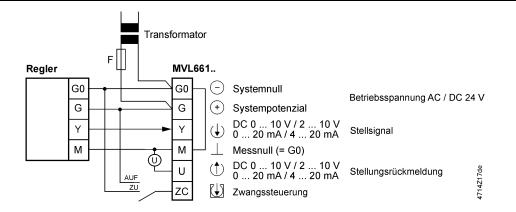
Allgemeine Umgebungsbedingungen

	Betrieb	Transport	Lagerung
	EN 60721-3-3	EN 60721-3-2	EN 60721-3-1
Klimatische Bedingungen	Klasse 3K6	Klasse 2K3	Klasse 1K3
Temperatur	−2555 °C	−2570 °C	−545 °C
Feuchte	10100 % r. F.	< 95 % r. F.	595 % r. F.

Werkstoffe

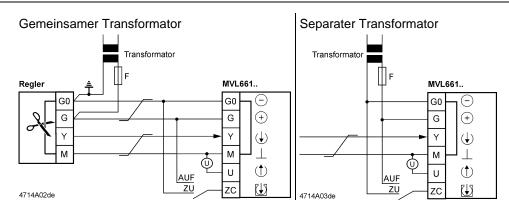
Rohranschlüsse Masse und Gewichte

Normen und Richtlinien

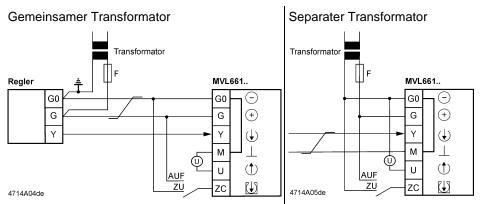

 $^{^{2)}}$ Bei 45 °C < T_{amb} < 55 °C und 80 °C < T_{med} < 120 °C muss das Ventil liegend eingebaut werden, um eine Verkürzung der Lebensdauer der Ventilelektronik zu vermeiden.

³⁾ Die Dokumente können unter http://www.siemens.com/bt/download bezogen werden.

⁴⁾ Bei stark vibrierenden Installationen sollten aus Sicherheitsgründen nur Hochflex-Litzen verwendet werden.


Der Hersteller sowie der Betreiber sind verpflichtet, alle gesetzlichen Vorschriften im Umgang mit Medien der Fluidgruppe 1 einzuhalten.

⁶⁾ Detaillierte Angaben siehe ASR70, Datenblatt A6V11858863



Anschlussschaltpläne

Anschluss an Regler mit 4-Leiter-Ausgang (bevorzugen!)

Anschluss an Regler mit 3-Leiter-Ausgang

Anzeige der Ventilstellung (nur bei Bedarf). DC 0...10 V → 0...100 % Volumendurchfluss Paarweise verdrillt. Werden die Leitungen für die AC 24 V-Speisung und das Stellsignal DC 0...10 V (DC 2...10 V, DC 0...20 mA, DC 4... 20 mA) separat geführt, so muss die AC 24 V-Leitung nicht verdrillt werden.

Warnung 🛆

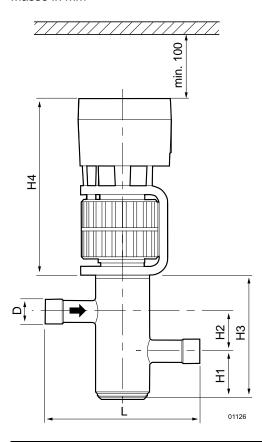
Die Verrohrung muss mit der Potential-Erde verbunden sein!

Bei separater Speisung für Regler und Ventil darf auf der sekundären Seite nur ein Transformator geerdet werden.

Achtung \triangle

Bei DC-Speisung muss mit vier Leitern verdrahtet werden!

Funktionsschalter


Werkeinstellung: Ventilkennlinie linear, Stellsignal DC 0...10 V. Details siehe "Konfiguration DIL-Schalter", Seite 3.

Kalibrierung

Siehe "Kalibrierung", Seite 4.

10/20

Masse in mm

Тур	DN	D [Zoll]	L [mm]	H1 [mm]	H2 [mm]	H3 [mm]	H4 [mm]	T [mm]	M [kg]
MVL661.15-0.4	15	5/8"	140	44	36	113	160	103	4,4
MVL661.15-1.0	15	5/8"	140	44	36	113	160	103	4,4
MVL661.20-2.5	20	7/8"	150	41	41	119	160	103	4,5
MVL661.25-6.3	25	1 1/8"	160	40	47	126	160	103	4,6
MVL661.32-10	32	1 3/8"	190	43	54	142	160	103	6,1
MVL661.32-12	32	1 3/8"	190	43	54	142	160	103	6,1

DN Nennweite

D Rohranschlüsse [Zoll], Innenmass

T Tiefe des Gerätes

M Gewicht inkl. Verpackung [kg]

Die Applikationen und Korrekturtabellen auf den nachfolgenden Seiten dienen der Ventilauswahl. Für die richtige Auswahl werden folgende Daten benötigt:

Applikation

Expansion (siehe ab Seite 12)
Heissgas (siehe ab Seite 16)
Saugdrosseln (siehe ab Seite 18)

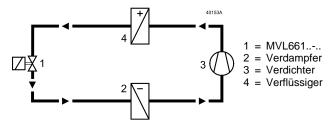
- Kältemittel
- Verdampfungstemperatur t₀ [°C]
- Verflüssigungstemperatur tc [°C]
- Kälteleistung Q₀ [kW]

Für die Berechnung der Nennleistung gilt folgende Formel:

•
$$k_{vs}$$
 [m³/h] = Q_0 [kW] / K...* * K... für Expansion = KE für Heissgas = KH für Saugdrossel = KS

- Der theoretische k_v-Wert für die nominale Kälteleistung der Anlage soll nicht < 50 % des k_{vs}-Werts des gewählten Ventils sein.
- Für eine genaue Dimensionierung empfiehlt sich die Selektionssoftware «Refrigeration VASP».

Die Applikationsbeispiele auf den nachfolgenden Seiten sind nur Prinzipschemas, d.h. sie enthalten keine installationsspezifischen Details wie Sicherheitselemente, Kältemittelsammler usw.


Applikation mit MVL661..-.. als Expansionsventil

Hinweis

Planungshinweise, Seite 6 beachten

- Typischer Regelbereich 20...100 %.
- Höhere Leistung durch bessere Verdampferausnutzung.
- Bei zwei oder mehr Verdichter (-stufen) wesentliche Wirkungsgradsteigerung bei Teillast.
- Besonders geeignet bei variierenden Verflüssigungs- und Verdampfungsdrücken.

Leistungsoptimierung

Die elektronische Überhitzungsregelung erfolgt mit zusätzlichen Regelgeräten, z.B. PolyCool.

Applikationsbeispiel

Kältemittel R407C; Q_0 = 205 kW; t_0 = -5 °C; t_c = 35 °C Gesucht wird der passende k_{vs} -Wert des MVL661..-..

In der Korrekturtabelle KE (siehe Seite 15) für R407C ist jener Ausschnitt wichtig, der um den Betriebspunkt liegt: Aus den vier Eckwerten wird der für den Betriebspunkt massgebliche Korrekturfaktor KE linear interpoliert.

Hinweis zur Interpolation

In der Praxis genügt eine Abschätzung des KE-, KH- oder KS-Wertes, weil der ermittelte theoretische k_{vs}-Wert auf einen der zehn in der Ventilreihe verfügbaren k_{vs}-Werte bis zu 30 % auf- oder abgerundet wird. Damit kann direkt mit Schritt 4 fortgefahren werden.

1. Schritt: für $t_c = 35$ wird der Wert für $t_0 = -10$ zwischen den angegebenen Tabellenwerten 20 und 40 berechnet. Resultat **112**

2. Schritt: für t_c = 35 wird der Wert für t_0 = 0 zwischen den angegebenen Tabellenwerten 20 und 40 berechnet. Resultat **109**

3. Schritt: für $t_0 = -5$ wird der Wert für $t_c = 35$ zwischen den in Schritt 1 und 2 berechneten Korrekturfaktoren 112 und 109 berechnet. Resultat **111**

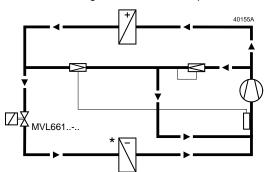
4. Schritt: Berechnung des theoretischen kvs-Wertes. Resultat 1,85 m³/h

5. Schritt: Ventilwahl. Dem theoretischen k_{vs}-Wert am nächsten liegt MVL661.20-2.5

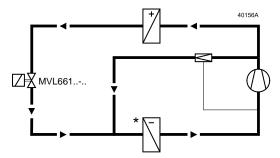
6. Schritt: Überprüfen, ob der theoretische k_{vs} -Wert nicht < 50 % des nominalen k_{vs} -Wertes ist.

KE -R407C	$t_0 = -10 ^{\circ}\text{C}$	t ₀ = 0 °C
t _c = 20 °C	108	85
$t_c = 35$ °C	112	109
<i>t</i> _c = 40 °C	113	117

Interpolieren bei	t _c = 35 °C
108 + [(113 - 108) x (35- 20) / (40 - 20)]	112
85 + [(117 - 85) x (35 - 20) / (40 - 20)]	109


Interpolieren bei	t _o = -5 °C
112 +[(109 - 112) x (-5 - 0) / (-10 - 0)]	111

 k_{vs} theoretisch = 205 kW / 111 = 1,85 m³/h


Das Ventil MVL661.20-2.5 ist einsetzbar, da: 1,85 m³/h / 2,5 m³/h x 100 % = 74 % (> 50 %)

Leistungsregelung

- a) Kälteventil MVL661..-.. zur Leistungsregelung eines Direktverdampfers.
 Saugdruck- und Temperaturüberwachung durch mechanischen Leistungsregler und Nachspritzventil.
 - Typischer Regelbereich 0...100 %
 - Energetisch vorteilhaftes Teillastverhalten
 - Ideale Regelbarkeit von Temperatur und Entfeuchtung

- b) Kälteventil MVL661..-.. zur Leistungsregelung eines Kaltwassersatzes.
 - Typischer Regelbereich 10...100 %
 - Energetisch vorteilhaftes Teillastverhalten
 - Weite Schiebung der Verflüssigungs- und Verdampfungstemperatur möglich
 - Ideal für Plattenwärmetauscher
 - · Sehr hohe Frostsicherheit

Hinweis

Es ist möglich, dass im Teillastbetrieb ein grösseres Ventil als unter Volllast erforderlich ist. Eine Dimensionierung unter beiden Bedingungen verhindert, dass das Ventil bei Teillast unterdimensioniert ist.

Korrekturtabelle KE

Expansionsventil

		R22							
t _c ∖ t _o	-40	-30	-20	-10	0	10			
00	82	68	37						
20	101	104	107	105	81	18			
40	108	111	114	118	120	123			
60	104	108	112	116	119	122			

		R134a							
t _c \ t _o	-40	-30	-20	-10	0	10			
00	27								
20	71	74	77	66	43				
40	74	78	81	85	89	92			
60	67	72	76	81	85	89			

	R744						
t _c \ t _o	-40	-30	-20	-10	0	10	
-20	226	149					
00	262	264	241	166			
20	245	247	247	246	213		

I			R290 ¹⁾								
l	$t_c \setminus t_o$	-40	-30	-20	-10	0	10				
I	00	83	67	22							
	20	104	109	113	107	80					
	40	105	110	115	120	125	130				
	60	93	99	105	111	116	122				

		R401A						
$t_c \setminus t_o$	-40	-30	-20	-10	0	10		
00	31							
20	80	83	85	72	46			
40	87	90	94	97	101	102		
60	85	89	94	98	102	106		

		R402A							
t _c \ t _o	-40	-30	-20	-10	0	10			
00	73	69	50						
20	77	81	85	88	74	35			
40	71	75	80	84	88	91			
60	50	55	60	65	69	74			

		R404A							
t _c \ t _o	-40	-30	-20	-10	0	10			
00	69	63	44						
20	70	74	78	81	68	30			
40	61	65	70	74	78	81			
60	36	41	46	51	55	59			

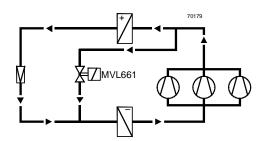
	R407A							
$t_c \setminus t_o$	-40	-30	-20	-10	0	10		
00	79	67	40					
20	91	95	98	102	82	30		
40	89	94	98	102	106	110		
60	72	77	82	87	92	96		

		R407B						
t _c \ t _o	-40	-30	-20	-10	0	10		
00	72	66	45					
20	77	80	84	88	75	34		
40	69	74	78	83	87	91		
60	46	51	56	61	66	70		

		R407C								
t _c \ t _o	-40	-30	-20	-10	0	10				
00	79	65	31							
20	98	101	105	108	85	21				
40	100	104	109	113	117	121				
60	87	93	98	103	108	113				

		R410A							
t _c ∖ t _o	-40	-30	-20	-10	0	10			
00	116	117	91	12					
20	125	130	133	137	120	69			
40	119	124	129	133	137	140			
60	90	96	101	106	110	114			

	R410B							
t _c ∖ t _o	-40	-30	-20	-10	0	10		
00	112	112	87	11				
20	122	126	129	132	115	66		
40	119	124	128	131	134	137		
60	98	103	108	112	115	118		


		R507						
t _c \ t _o	-40	-30	-20	-10	0	10		
00	72	66	47					
20	78	81	83	86	71	33		
40	74	78	81	84	87	90		
60	53	57	61	64	68	71		

		R1270 ¹⁾					
$t_c \setminus t_o$	-40	-30	-20	-10	0	10	
00	109	93	59				
20	122	126	130	129	101	31	
40	122	127	133	138	142	147	
60	108	115	121	127	132	138	

- Bei Überhitzung = 6 K
 Δp Kondensator = 0,3 bar
- Bei Unterkühlung = 2 K Δp Verdampfer = 0,3 bar
- Δp vor Verdampfer = 1,6 bar
- ¹⁾ Für Kältemittel der Fluidgruppe 1 kontaktieren Sie bitte Ihren zuständigen Siemens-Ansprechpartner

Das Regelventil drosselt die Leistung einer Verdichterstufe. Das Heissgas wird direkt in den Verdampfer eingeführt und gestattet so eine Leistungsregelung im Bereich von 100 % bis gegen 0 %.

Indirekte Heissgasbypass Applikation

Geeignet für grosse Klimakälteanlagen, wo zwischen dem Schalten einzelner Verdichterstufen unzulässige Temperaturschwankungen auftreten können.

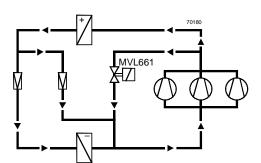
Applikationsbeispiel

Je nach Art der Verdampfungs- und Kondensationsdruckregelung können diese beiden Drücke im Teillastbetrieb variieren. Dabei erhöht sich der Verdampfungsdruck und der Kondensationsdruck fällt. Durch den reduzierten Differenzdruck über dem voll geöffneten Ventil reduziert sich der Volumenstrom – das Ventil ist unterdimensioniert. Für eine korrekte Teillastauslegung müssen daher die effektiven Drücke berücksichtigt werden.

Kältemittel R507; 3-stufig; $Q_0 = 75$ kW; $t_0 = 4$ °C; $t_c = 40$ °C Teillast Q_0 pro Stufe = 28 kW; t_0 = 4 °C; t_c = 23 °C

KH -R507	t ₀ = 0 °C	t ₀ = 10 °C
t _c = 20 °C	14,4	9,0
$t_c = 23 ^{\circ}C$	15,6	11,0
<i>t_c</i> = 40 °C	22,4	22,0

Interpolieren bei	t _c = 23 °C
14,4 + [(22,4 - 14,4) x (23 - 20) / (40 - 20)]	15,6
9,0 + [(22,0 - 9,0) x (23 - 20) / (40 - 20)]	11,0


Interpolieren bei	t ₀ = 4 °C
15,6 + [(11,0 - 15,6) x (4 - 0) / (10 - 0)]	13,8

 k_{vs} theoretisch = 28 kW / 13,8 = 2,03 m³/h

Das Ventil MVL661.20-2.5 ist einsetzbar, da: $2,03 \text{ m}^3/\text{h} / 2,5 \text{ m}^3/\text{h} \times 100 \% = 81 \% (> 50 \%)$

Direkte Heissgasbypass Applikation

Das Regelventil drosselt die Leistung einer Verdichterstufe. Das Gas wird auf die Saugseite des Verdichters geführt und durch ein Nachspritzventil gekühlt. Leistungsregelbereich 100 % bis etwa 10 %.

Geeignet für grössere Klimakälteanlagen mit mehreren Verdichter (-stufen) und bei grösserer Entfernung zwischen Verdampfer und Verdichter (Ölrückführung beachten).

Korrekturtabelle KH

Heissgasventil

		R22							
t _c ∖ t _o	-40	-30	-20	-10	0	10			
00	8,9	8,4	6,3						
20	15,3	15,1	14,8	14,6 22,8	13,2	6,5			
40	24,2	23,7	23,2	22,8	22,4	22,1			
60	35.7	34.7	33.8	33.0	32.3	31.7			

		R134a						
$t_c \setminus t_o$	-40	-30	-20	-10	0	10		
00	4,5							
20	9,8	9,6	9,5	9,2	7,4			
40	15,9	15,6	15,3	15,1	14,9	14,7		
60	23,8	23,2	22,7	22,3	21,9	21,6		

		R744					
t _c \ t _o	-40	-30	-20	-10	0	10	
-20	38,1	30,5					
00	60,9	59,8	58,1	47,1			
20	87,3	84,9	82,5	80,2	76,1		

	R290 ¹⁾						
t _c \ t _o	-40	-30	-20	-10	0	10	
00	10,9		6,5				
20	18,0	17,7	17,4	17,1	15,0		
40	27,3	26,7	17,4 26,2	25,8	25,4	25,1	
60	38,2	37,2	36,4	35,7	35,1	34,5	

		R401A						
$t_c \setminus t_o$	-40	-30	-20	-10	0	10		
00	4,7							
20	10,2	10,0	9,9	9,5	7,6			
40	16,9	16,6	16,2	16,0	15,8	15,6		
60	25,9	25,2	24,6	24,1	23,7	23,3		

		R402A						
t _c \ t _o	-40	-30	-20	-10	0	10		
00	9,7	9,5	8,3					
20	15,9	15,7	15,4	15,2	14,5	9,3		
40	23,7	23,2	22,7	22,4	22,0	21,7		
60	31,5	30,7	29,9	29,2	28,7	28,1		

		R404A						
$t_c \setminus t_o$	-40	-30	-20	-10	0	10		
00	9,4	9,2	7,8					
20	15,2	15,0	14,8	14,6	13,9	8,6		
40	22,3	21,8	21,5	21,1	20,9	20,6		
60	28,8	28,0	27,4	26,8	26,4	25,9		

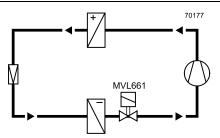
	R407A					
$t_c \setminus t_o$	-40	-30	-20	-10	0	10
00	8,9	8,6	6,7			
20	15,7	15,4	15,2	15,0	14,1	8,0
40	24,9	24,4	23,9	23,5	23,1	8,0 22,8 32,0
60	35,9	34,9	34,0	33,2	32,6	32,0

		R407B				
$t_c \setminus t_o$	-40	-30	-20	-10	0	10
00	9,0	8,8	7,4			
20	15,3	15,1	14,8	14,7	14,0	8,8
40	23,3	22,8	22,4	22,0	21,7	21,5
60	31,6	30,7	30,0	29,3	28,8	28,3

	R407C					
t _c \ t _o	-40	-30	-20	-10	0	10
00	8,6	8,1	5,9			
20	15,3	15,0	14,8	14,6	13,6	7,0
40	24,7	24,2	23,7	23,3	22,9	22,6
60	36,3	35,3	34,4	33,6	33,0	32,4

		R410A				
t _c \ t _o	-40	-30	-20	-10	0	10
00	14,5	14,3	13,2	6,2		
20	24,2	23,7	23,3	23,0	22,1	15,9
40			35,1			33,1
60	50,0	48,5	47,2	46,0	44,9	43,8

	R410B					
t _c ∖ t _o	-40	-30	-20	-10	0	10
00	14,3	14,1	12,9	6,1		15,5 32,5 44,0
20	23,8	23,3	22,9	22,5	21,6	15,5
40	36,5	35,6	34,7	33,9	33,2	32,5
60	50,7	49,1	47,7	46,4	45,2	44,0


		R507				
t _c \ t _o	-40	-30	-20	-10	0	10
00	9,8	9,5	8,1			
20	16,1	9,5 15,8 23,8	15,5	15,3	14,4	9,0
40	24,5	23,8	23,3	22,8	22,4	22,0
60	33,1	31,8	30,7	29,8	29,0	28,3

	R1270 ¹⁾					
t _c \ t _o	-40	-30	-20	-10	0	10
00	13,5	13,0	10,3			
20	22,0	21,6	21,2	20,9	19,0	9,9
40	33,0	32,2	31,6	31,1	30,6	30,1
60	13,5 22,0 33,0 46,1	44,8	43,8	42,8	41,9	41,2

Bei Überhitzung = 6 K
Δp Kondensator = 0,3 bar

Bei Unterkühlung = 2 K Δp Verdampfer = 0,3 bar Δp vor Verdampfer = 1,6 bar

¹⁾ Für Kältemittel der Fluidgruppe 1 kontaktieren Sie bitte Ihren zuständigen Siemens-Ansprechpartner

Typischer Regelbereich 50...100 %. Minimal-Hubbegrenzung: Zur optimalen Kompressorkühlung muss entweder ein Leistungsregler zum Kompressor vorhanden sein oder ein Minimalhub an der Ventilelektronik eingestellt werden.

Der Minimalhub lässt sich bis auf 80 % festlegen. Damit kann die minimale Gasgeschwindigkeit in der Saugleitung sichergestellt werden.

Schliesst das Regelventil, steigt die Verdampfungstemperatur. Die Luftauskühlung sinkt kontinuierlich. Die elektronische Regelung gestattet die bedarfsgerechte Kühlung ohne ungewollte Entfeuchtung und entsprechend kostspielige Nachbehandlung.

Der Druck am Verdichtereingang sinkt. Die Leistungsaufnahme des Verdichters nimmt ab. Die bei Teillast zu erwartende Energieeinsparung kann aus dem Auswahldiagramm des Verdichters ermittelt werden (Leistungsaufnahme bei minimal zulässigem Saugdruck). Die Energieeinsparung am Verdichter beträgt bis zu 40 %).

Der empfohlene Differenzdruck Δp_{v100} über dem voll geöffneten Regelventil soll zwischen $0.15 < \Delta p_{v100} < 0.5$ bar betragen.

Applikationsbeispiel

Kältemittel R134A; $Q_0 = 9.5$ kW; $t_0 = 4$ °C; $t_c = 40$ °C; Differenzdruck MVL661..-..: Δp_{v100} = 0,25 bar

In diesem Beispiel werden t_0 , t_c und Δp_{v100} interpoliert.

KS -R134a	t ₀ = 0 °C	t ₀ = 10 °C
0,15 / 20	2,2	2,7
0,15 / 50	1,7	2,1
0,45 / 20	3,6	4,5
0,45 / 50	2,7	3,4

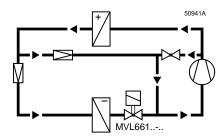
50	2,7	3,4	2,7 + [(3,4 - 2,7) x (4 - 0) / (10 - 0)]	3,0
°C	t _c = 20 °C	t _c = 50 °C	Interpolieren bei	t _c = 40 °C
0,15	2,4	1,9	2,4 + [(1,9 - 2,4) x (40 - 20) / (50 - 20)]	2,1
0,45	4.0	3.0	$4.0 + [(3.0 - 4.0) \times (40 - 20) / (50 - 20)]$	3.3

Interpolieren bei

2,2 + [(2,7 - 2,2) x (4 - 0) / (10 - 0)]

 $1,7 + [(2,1 - 1,7) \times (4 - 0) / (10 - 0)]$

 $3,6 + [(4,5 - 3,6) \times (4 - 0) / (10 - 0)]$


t ₀ = 4 °C	t _c = 20 °C	t _c = 50 °C
$\Delta p_{v100} 0,15$	2,4	1,9
$\Delta p_{v100} 0,45$	4,0	3,0

Interpolieren bei	$\Delta p_{v100} 0,25$
2.1 + [(3.3 - 2.1) x (0.25 - 0.15) / (0.45 - 0.15)]	2.5

t _c = 40 °C	Δp _{v100} 0,15	Δp _{v100} 0,45
	2,1	3,3

 k_{vs} theoretisch = 9,5 kW / 2,5 = 3,8 m³/h

Das Ventil MVL661.25-6,3 ist einsetzbar, da: $3.8 \text{ m}^3/\text{h} / 6.3 \text{ m}^3/\text{h} \times 100 \% = 60 \% (> 50 \%)$ Der k_{vs}-Wert wird vorteilhaft auf 63 % = 4 m³/h eingestellt.

Typischer Regelbereich 10...100 %. Durch den Leistungsregler, über dem Kompressor, wird dieser genügend gekühlt und eine Minimalhubbegrenzung beim Kälteventil entfällt.

 $t_0 = 4$ °C

2,4

1,9

4,0

Korrekturtabelle KS

Saugdrosselventil

t _c		R22							
∆p _{v100} \ t _o	-40	-30	-20	-10	0	10			
0,15 / 20	1,2	1,5	1,9	2,4	2,9	3,4			
0,15 / 50	0,9	1,2	1,5	1,9	2,3	2,7			
0,45 / 20	1,5	2,3	3,0	3,9	4,8	5,7			
0,45 / 50	1,2	1,8	2,4	3,0	3,8	4,6			

t _c		R134a							
$\Delta p_{v100} \setminus t_o$	-40	-30	-20	-10	0	10			
0,15 / 20	0,7	1,0	1,4	1,8	2,2	2,7			
0,15 / 50	0,5	0,7	1,0	1,3	1,7	2,1			
0,45 / 20	0,7	1,2	1,9	2,7	3,6	4,5			
0,45 / 50	0,5	0,9	1,4	2,0	2,7	3,4			

t _c			R152A 1)					
∆p _{v100} \	to	-40	-30	-20	-10	0	10	
0,15 / 2	0	0,9	1,3	1,7	2,2	2,7	3,3	
0,15 / 5	0	0,7	1,0	1,4	1,7	2,2	2,7	
0,45 / 2	20	1,0	1,5	2,4	3,3	4,3	5,3	
0,45 / 5	0	0,7	1,2	1,9	2,6	3,5	4,4	

t _c		R290 ¹⁾						
∆p _{v100} \ t _o	-40	-30	-20	-10	0	10		
0,15 / 20	1,5	1,9	2,4	3,0	3,6	4,3		
0,15 / 50	1,0	1,4	1,8	2,2	2,7	3,3		
0,45 / 20	2,0	2,8	3,8	4,8	6,0	7,2		
0,45 / 50	1,4	2,1	2,8	3,6	4,5	5,5		

tc		R401A						
∆p _{v100} \ t _o	-40	-30	-20	-10	0	10		
0,15 / 20	0,8	1,1	1,5	1,9	2,3	2,9		
0,15 / 50	0,6	0,8	1,1	1,5	1,8	2,3		
0,45 / 20	0,8	1,3	2,1	2,9	3,7	4,7		
0,45 / 50	0,6	1,0	1,6	2,3	3,0	3,7		

tc		R402A						
$\Delta p_{v100} \setminus t_o$	-40	-30	-20	-10	0	10		
0,15 / 20	1,1	1,4	1,8	2,2	2,7	3,3		
0,15 / 50	0,7	0,9	1,2	1,5	1,8	2,3		
0,45 / 20	1,5	2,2	2,9	3,7	4,6	5,6		
0,45 / 50	0,9	1,4	1,9	2,4	3,1	3,8		

tc		R404A						
∆p _{v100} \ t _o	-40	-30	-20	-10	0	10		
0,15 / 20	1,0	1,3	1,7	2,2	2,7	3,3		
0,15 / 50	0,6	0,8	1,1	1,4	1,7	2,1		
0,45 / 20	1,4	2,1	2,8	3,6	4,5	5,5		
0,45 / 50	0,8	1,2	1,7	2,3	2,9	3,6		

tc	R407A							
$\Delta p_{v100} \setminus t_o$	-40	-30	-20	-10	0	10		
0,15 / 20	1,0	1,4	1,8	2,3	2,9	3,5		
0,15 / 50	0,7	1,0	1,3	1,6	2,1	2,6		
0,45 / 20	1,3	2,0	2,9	3,8	4,7	5,9		
0,45 / 50	0,9	1,4	2,0	2,7	3,4	4,3		

tc		R407B						
∆p _{v100} \ t _o	-40	-30	-20	-10	0	10		
0,15 / 20	1,0	1,3	1,7	2,2	2,7	3,3		
0,15 / 50	0,6	0,8	1,1	1,4	1,8	2,2		
0,45 / 20	1,3	2,0	2,7	3,5	4,5	5,5		
0,45 / 50	0,8	1,2	1,7	2,3	3,0	3,8		

tc		R407C							
$\Delta p_{v100} \setminus t_o$	-40	-30	-20	-10	0	10			
0,15 / 20	1,0	1,4	1,8	2,3	2,9	3,5			
0,15 / 50	0,7	1,0	1,3	1,7	2,1	2,6			
0,45 / 20	1,3	2,0	2,8	3,8	4,8	5,9			
0,45 / 50	0,9	1,4	2,1	2,8	3,5	4,4			

tc		R410A						
∆p _{v100} \ t _o	-40	-30	-20	-10	0	10		
0,15 / 20	1,5	2,0	2,5	3,0	3,6	4,4		
0,15 / 50	1,0	1,3	1,7	2,1	2,6	3,1		
0,45 / 20	2,3	3,1	4,0	5,0	6,1	7,4		
0,45 / 50	1,6	2,1	2,8	3,5	4,4	5,3		

tc	R410B						
$\Delta p_{v100} \setminus t_o$	-40	-30	-20	-10	0	10	
0,15 / 20	1,5	1,9	2,4	2,9	3,6	4,2	
0,15 / 50	1,0	1,3	1,7	2,1	2,6	3,1	
0,45 / 20	2,3	3,1	3,9	4,9	6,0	7,2	
0,45 / 50	1,6	2,1	2,8	3,5	4,3	5,2	

<sup>Bei Überhitzung = 6 K
Δp Kondensator = 0,3 bar</sup>

Bei Unterkühlung = 2 K Δp Verdampfer = 0,3 bar

 $[\]Delta p$ vor Verdampfer = 1,6 bar

¹⁾ Für Kältemittel der Fluidgruppe 1 kontaktieren Sie bitte Ihren zuständigen Siemens-Ansprechpartner.

Тур	Gültig ab RevNr.
MVL661.15-0.4	С
MVL661.15-1.0	С
MVL661.20-2.5	D
MVL661.25-6.3	С
MVL661.32-10	A
MVL661.32-12	С

Herausgegeben von:
Siemens Schweiz AG
Smart Infrastructure
Global Headquarters
Theilerstrasse 1a
6300 Zug
Schweiz
Tel. +41 58-724 24 24
www.siemens.com/buildingtechnologies

© Siemens Schweiz AG, 2011 Liefermöglichkeiten und technische Änderungen vorbehalten