ENGINEERING TOMORROW

Benutzerhandbuch

Verbundregler Typ **AK-PC 782B**

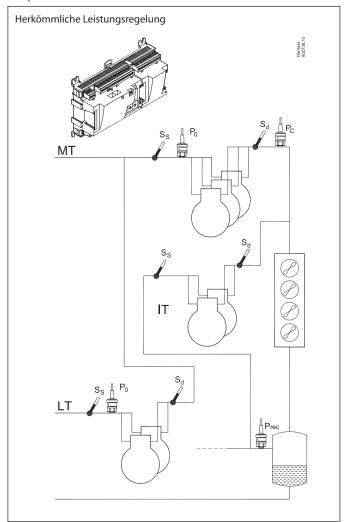
Leistungsreglung für transkritische CO₂-Booster **SW-Vers. 3.7x**

Inhalt

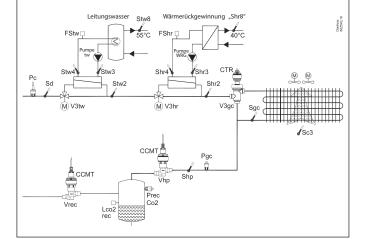
	führung		4.1.21	I Konfiguration von Ein- und Ausgängen	71
1.1	Anwendung	3	4.1.22	2 Einstellen von Alarmprioritäten	73
1.2	Prinzip	4	4.1.23	3 Konfiguration für Sperrung/Freigabe	74
_				1 Überprüfung der Konfiguration	
	bau eines Reglers			orüfung der Anschlüsse	
	Modulübersicht		Über	prüfung der Einstellungen	79
	Gemeinsame Daten zu Modulen10		Zeitp	lanfunktion	81
2.3	Regler1			lation im Netzwerk	
	2.3.1 Erweiterungsmodul AK-XM 101A13		Inbet	riebnahme der Regelung	83
	2.3.2 Erweiterungsmodul AK-XM 102A / AK-XM 102B 1	5	4.6.1	Starten der Steuerung	84
	2.3.3 Erweiterungsmodul AK-XM 103A1		4.6.2	Manuelle Leistungsregelung	85
	2.3.4 Erweiterungsmodul AK-XM 204A / AK-XM 204B 19				
	2.3.5 Erweiterungsmodul AK-XM 205A / AK-XM 205B 2			ng functions	
	2.3.6 Erweiterungsmodul AK-XM 208C23			gruppegruppe	
	2.3.7 Erweiterungsmodul AK-OB 1102			ungsregler für Verdichter	
	2.3.8 Erweiterungsmodul EKA 163B / EKA 164B 26			Verfahren zur Leistungsverteilung	
	2.3.9 Grafisches Display MMIGRS220			Verbundtypen – Verdichterkombinationen	
	2.3.10 Stromversorgungsmodul AK-PS 075 / 150 / 250 2			Verdichter-Zeitschaltuhren	
	2.3.11 Kommunikationsmodul AK-CM 10228			Verdichter mit variabler Leistung	
	Vorwort zum Design29			Lastabwurf	
	Aufbau einer Verdichter- und Verflüssigerregelung 3			Injection ON	96
2.6	Bestellung39	9	5.2.7	Flüssigkeitseinspritzung	
2 M-		•		in gemeinsame Saugleitung	
	unting and wiring40			Sicherheitsfunktionen	
	Montage40			nagement	
3.2	Verdrahtung42	2 5.4		issiger/Gaskühler	
4 Cor	nfiguration and operation4	5		Leistungsregelung des Verflüssigers	
7. CO I	Konfiguration4	5		Sollwert für Gaskühlertemperatur	
7.1	4.1.1 PC anschließen	_		Leistungsverteilung	
	4.1.2 Autorisierung	, ,,,		issigerschaltungen	
	4.1.3 Freigabe zur Konfiguration des Reglers	^		rheitsfunktionen für Verflüssiger	105
	4.1.4 Systemeinstellung		irans	kritisches CO2-System	100
	4.1.5 Einstellung der Anlagenart			Värmerückgewinnung	106
	4.1.6 Einstellung der Steuerung des NK-Verbunds 5		5./.1	Wärmerückgewinnung – Brauchwarmwasser-Kreislauf	107
	4.1.7 Ölmanagement		- - - - -		107
	4.1.8 Einstellung der Regelung der Verflüssigerlüfter 50		5.7.2	Wärmerückgewinnung – Kreislauf	100
	4.1.9 Einstellung der Hochdruckregelung		F 7 3	für Wärmerückgewinnung zum Heizen	108
	4.1.10 Einstellen der Sammlerdruckregelung		5.7.3		117
	4.1.11 Einstellung des Sammlersollwerts		5.7.4	für Danfoss Wärmerückgewinnungseinheit Kreisläufe zur Regelung des CO2-Gasdrucks	
	mit Niederdruck Multi-Ejektoren62	2			
	4.1.12 Einstellung der Regelung	_	5.7.5	, , ,	
	der Wärmerückgewinnung6	3	5.7.7	Sammlerdruckregelung Sicherheitsmaßnahmen	
	4.1.13 Einstellung der KPI- und COP-Berechnung69		5.7.8	Maßnahmen bei niedrigem Sammlerdruck	
	4.1.14 Einstellung der Displayanzeige			Parallelverdichtung	
	4.1.15 Konfiguration der Funktionen		3.7.9 Sollar	ert-Management	127
	für die allgemeine Verwendung6			relle Überwachungsfunktionen	
	4.1.16 Separate Thermostate6	5.5		hiedeneshiedenes	
	4.1.17 Druckschalter	_		ind COP-Berechnung	
	4.1.18 Separate Spannungssignale	٠, ١		ng A – Verdichterkombinationen	130
	4.1.19 Separate Alarmeingänge69			ng A – verdichterkombinationen ichaltprinzip	140
			una 3	·CHAILPHILIZIP	14U
	4.1.20 Separate PI-Funktionen70	0 = 11	2 Anha	ng B – Alarmtexte	116

1. Einführung

1.1 Anwendung


AK-PC 782B sind komplette Regeleinheiten zur Leistungsregelung von Verdichtern und Verflüssigern in transkritischen CO₂-Boosteranlagen mit parallel geschalteten Verdichtern. Der Regler übernimmt zusätzlich das Ölmanagement, die Wärmerückgewinnung und die CO₂-Gasdruckregelung. Die Regler können zusätzlich zur Leistungsregelung anderen Reglern über Betriebszustände Signal geben, z. B. Zwangsschließung von Expansionsventilen, Alarmsignale und Alarmmitteilungen. Hauptfunktion des Reglers ist es, Verdichter und Verflüssiger so zu steuern, dass sie ständig unter den energiemäßig optimalen Druckbedingungen arbeiten. Sowohl der Saugdruck als auch der Verflüssigungsdruck werden von Druckmessumformern gesteuert, die Spannungssignale abgeben. Die Leistungsregelung muss durch Saugdruck P0 erfolgen. (Das P0-Signal für den parallelen Verdichter wird vom Druckmessumformer am Sammler geliefert.)

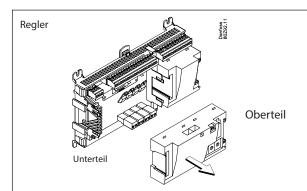
Zu den verschiedenen Funktionen zählen u. a.:


- Leistungsregelung von bis zu 10 Verdichtern bei NK und 8 bei PV
- Leistungsregelung von bis zu 4 Verdichtern auf LT
- Bis zu drei Entlastungsvorrichtungen pro Verdichter
- · Regelung von Ölabscheider und Ölsammler
- Drehzahlregelung von ein oder zwei Verdichtern in jeder Gruppe
- Bis zu 6 Sicherheitseingänge pro Verdichter
- Möglichkeit zur Leistungsbegrenzung, um Verbrauchsspitzen zu minimieren
- Wenn der Verdichter nicht startet, können an andere Regler entsprechende Signale übermittelt werden, um die elektronischen Expansionsventile zu schließen
- Regelung der Flüssigkeitseinspritzung in die Saugleitung
- Sicherheitsüberwachung von Hochdruck / Niederdruck / Druckrohrtemperatur
- · Leistungsregelung von bis zu 8 Lüftern
- · Fließender Sollwert gemäß Außentemperatur
- Wärmerückgewinnungsfunktion
- CO₂-Gaskühlerregelung und Sammlerregelung
- Ejektorregelung: HP, LE (Flüssigkeit)
- · Sicherheitsüberwachung von Lüftern
- Der Zustand der Aus- und Eingänge wird mittels Leuchtdioden an der Apparatfront angezeigt.
- Alarmsignale lassen sich über Datenkommunikation generieren.
- Alarme kommen mit Text zur Anzeige, was die Alarmursache eindeutig erkennbar macht.
- Dazu kommen einige ganz separate Funktionen, die von der Regelung völlig unabhängig sind – u. a. Alarm-, Thermostat-, Druckschalter- und PI-Regelungsfunktionen.

Beispiele

SW = 3.7x

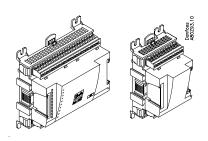
Wärmerückgewinnungsfunktion, Regelung des Verflüssigungsdrucks und Behälterdrucks

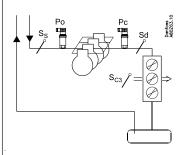


1.2 Prinzip

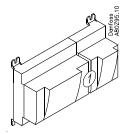
Diese Reglerbaureihe hat den großen Vorteil, dass sie im Takt mit der Vergrößerung der Anlage problemlos erweitert werden kann. Sie wurde für Kühlungsregelungssysteme entwickelt, jedoch nicht für eine spezielle Anwendung – durch die einlesbare Software wird Vielfalt gewährleistet, wobei die Anschlüsse wahlweise definiert werden können. Dabei kommen bei jeder Regelung die gleichen Module zum Einsatz, die sich je nach Bedarf zusammensetzen lassen. Mit diesen Modulen (Bausteinen) ist die Gestaltung einer Vielzahl unterschiedlicher Regelungen möglich. Sie selbst können jedoch dazu beitragen, die Regelung an den aktuellen Bedarf anzupassen – diese Anleitung soll Ihnen dabei behilflich sein, Fragen zu beantworten, um die Regelung zu definieren und die Anschlüsse vorzunehmen.

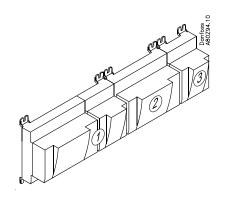
Vorteile


- Die Reglergröße kann mit zunehmender Anlagengröße "mitwachsen"
- Die Software ist auf eine oder mehrere Regelungen einstellbar
- Mehrere Regelungen mit den gleichen Komponenten
- Erweiterungsfähig bei geänderten Anlagenbedingungen
- Flexibles Konzept:
 - Reglerserie mit gemeinsamem Aufbau
 - Ein Prinzip viele Regelanwendungen
 - Module werden für den aktuellen Anwendungsbedarf gewählt
 - Von Regelung zu Regelung kommen stets die gleichen Module zur Anwendung


Der Regler ist der Grundpfeiler der Regelung. Das Modul hat Ein- und Ausgänge zum Betrieb kleinerer Anlagen.

- Das Unterteil mit den Anschlussklemmen ist bei allen Reglertypen gleich.
- Das Oberteil enthält die Systemlogik-Software. Diese Einheit ist je nach Reglertyp unterschiedlich. Sie wird jedoch stets zusammen mit dem Unterteil geliefert.
- Das Oberteil ist zusätzlich zur Software mit Anschlüssen für die Datenkommunikation und Adresseneinstellungen ausgestattet.


Erweiterungsmodule


Wenn bei wachsenden Anlagen mehr Funktionen geregelt werden müssen, kann die Regelung erweitert werden. Mit zusätzlichen Modulen lassen sich mehr Signale verarbeiten und weitere Relais schalten, deren Zahl und Variante in Abhängigkeit von der jeweiligen Anwendung bestimmt wird.

Beispiele

Wenn nur wenige Anschlüsse benötigt werden, reicht ein Reglermodul für die Anwendung aus.

Benutzerhandbuch | Verbundregler, Typ AK-PC 782B

Direkter Anschluss

Die Konfiguration und der Betrieb des Reglers erfolgt über das Serviceprogramm "AK-Service Tool".

Das Programm wird auf einem PC installiert, und über die Menübilder des Reglers werden Einrichtung und Bedienung der verschiedenen Funktionen gesteuert.

Displays

Die Menübilder sind dynamisch, d. h. unterschiedliche Einstellungen in einem Menü führen zu unterschiedlichen Einstellmöglichkeiten in anderen Menübildern.

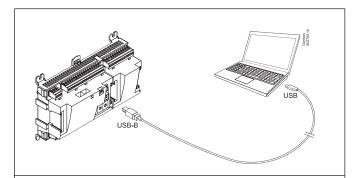
Bei einer einfachen Anwendung mit wenigen Anschlüssen stehen nur wenige Konfigurationseinstellungen zur Verfügung. Eine entsprechende Anwendung mit vielen Anschlüssen ist dagegen mit vielen Einstellungen verbunden.

Vom Übersichtsbild aus besteht Zugang zu weiteren Bildern für Verdichterregelung und Verflüssigerregelung. Ganz unten besteht Zugang zu einer Reihe allgemeiner Funktionen, darunter "Zeitschema", "Manuelle Bedienung", "Log-Funktion", "Alarme" und "Service" (Konfiguration).

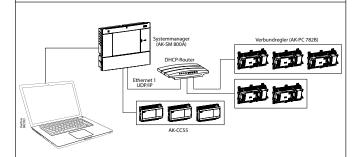
Netzwerkanschluss

Der Regler kann in einem Netzwerk mit anderen Reglern in einem ADAP-KOOL® Kühlungsregelungssystem verbunden werden. Nach erfolgter Konfiguration kann die Regelung mithilfe eines Softwareprogramms, z. B. Typ AKM, fernbedient werden.

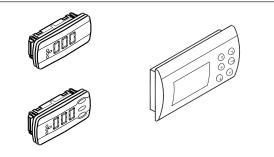
Benutzer


Der Regler ist in mehreren Sprachen bedienbar, aus denen der Benutzer eine auswählen und verwenden kann. Wenn es mehrere Benutzer gibt, kann jeder seine eigene Sprache wählen. Allen Benutzern muss ein Benutzerprofil zugewiesen werden, das entweder den vollen Zugriff auf die Bedienung ermöglicht oder diese schrittweise auf die niedrigste Stufe (nur Anzeige) einschränkt. Die Sprachauswahl ist über die Einstellungen des Service-Tools möglich.

Sollte das Service-Tool keine Sprachauswahl für den aktuellen Regler enthalten, werden die Texte in Englisch angezeigt.


Externes Display

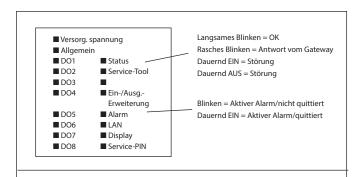
Zum Ablesen von PO- (Saugdruck) und Pc-Messungen (Verflüssigungsdruck) kann ein externes Display eingebaut werden. Es können insgesamt vier Displays montiert werden, wobei eine Einstellung die Auswahl zwischen folgenden Messwerten ermöglicht: Saugdruck, Saugdruck in Temperatur, Ss, Sd, Verflüssigungsdruck, Verflüssigungsdruck in Temperatur, S7 Gaskühlertemperatur, heißes Leitungswasser bei Wärmerückgewinnung und Wärmetauschertemperatur bei Wärmerückgewinnung.

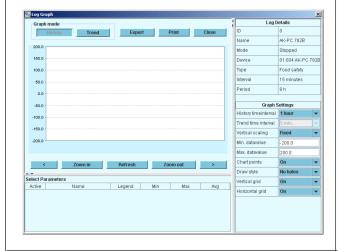

Ein grafisches Display mit Bedientasten kann ebenfalls eingebaut werden.

Benutzerhandbuch | Verbundregler, Typ AK-PC 782B

Leuchtdioden

Die vom Regler empfangenen und abgegebenen Signale lassen sich mithilfe mehrerer Leuchtdioden verfolgen.


Log


Mit der Log-Funktion lässt sich definieren, welche Messungen angezeigt werden sollen.

Die gesammelten Werte lassen sich auf einem Drucker ausdrucken oder in eine Datei exportieren. Die Datei kann in Excel geöffnet werden. In Servicesituationen können die Messungen mit einer Trendfunktion angezeigt werden. Die Messungen erfolgen dann in Echtzeit und werden sofort angezeigt.

Alarm

Das Bild bietet eine Übersicht über alle aktiven Alarme. Durch Markieren des Quittierungsfelds lässt sich ein Alarm bestätigen. Für nähere Informationen über einen aktuellen Alarm ist der Alarm anzuklicken, wonach auf dem Display ein Infobild angezeigt wird. Ein entsprechendes Bild findet sich für alle früheren Alarme. Diese Informationen stehen zur Verfügung, falls mehr über die Alarmhistorie in Erfahrung gebracht werden soll.

2. Aufbau eines Reglers

In diesem Abschnitt wird erläutert, wie der Regler aufgebaut ist. Im AK-System ist der Regler auf einer einheitlichen Anschlussplattform aufgebaut, wobei sich die Abweichungen von Regelung zu Regelung aus dem verwendeten Oberteil mit spezifischer Software und den für die jeweilige Anwendung erforderlichen Ein- und Ausgangssignalen ergeben. Bei Anwendungen mit wenigen Anschlüssen reicht möglicherweise ein Reglermodul aus (Oberteil mit zugehörigem Unterteil). Bei Anwendungen mit vielen Anschlüssen ist der Einsatz eines Reglermoduls sowie eines oder mehrerer Erweiterungsmodule erforderlich.

Dieser Abschnitt bietet eine Übersicht über die Anschlussmöglichkeiten und Hilfe bei der Auswahl der in Ihrer aktuellen Anwendung zu benutzenden Module.

2.1 Modulübersicht

Reglermodul – entspricht den Anforderungen kleinerer Anlagen.

Erweiterungsmodule

Bei höherer Komplexität und bei Bedarf zusätzlicher Ein- oder Ausgänge lässt sich der Regler mit Modulen erweitern. Die Spannungsversorgung und Datenkommunikation zwischen den Modulen erfolgt über einen Stecker seitlich am Modul.

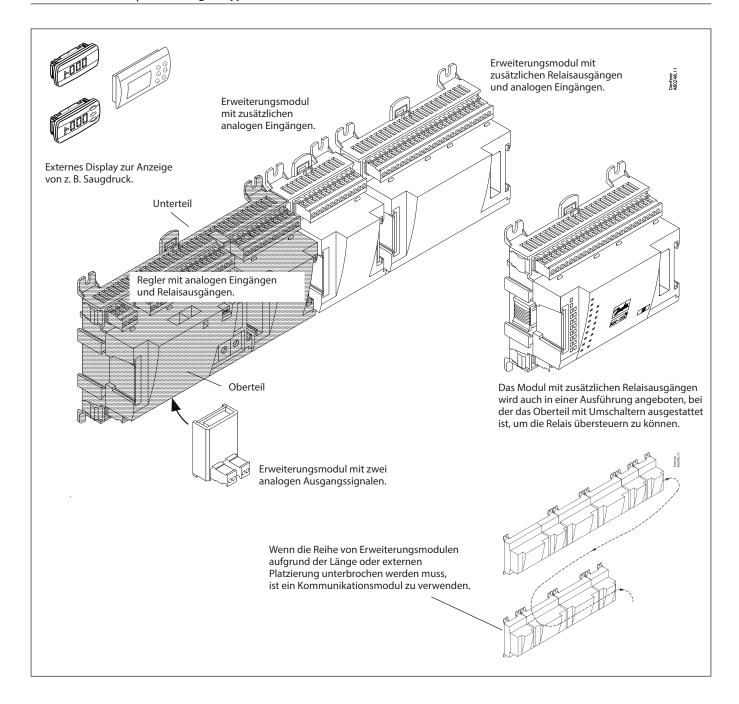
Oberteil

Das Oberteil des Reglermoduls enthält die Systemlogik. Über diese Einheit wird die Regelung definiert. Überdies erfolgt hier der Anschluss für die Datenkommunikation mit anderen Reglern in einem großen Netzwerk.

Anschlusstypen

Es finden sich verschiedene Typen von Ein- und Ausgängen. So kann z. B. ein Typ Signale von Fühlern oder Kontakten empfangen, während ein anderer ein Spannungssignal empfängt und ein dritter Ausgänge mit Relais bietet. Die einzelnen Typen sind der nachstehenden Tabelle zu entnehmen.

Optionaler Anschluss


Bei der Planung einer Regelung (Layout) entsteht Bedarf für eine Reihe von Anschlüssen, die sich auf die genannten Typen verteilen. Die einzelnen Anschlüsse sind dann entweder auf dem Reglermodul oder einem Erweiterungsmodul vorzusehen. Dabei muss lediglich darauf geachtet werden, dass die Typen nicht vermischt werden (ein analoges Ausgangssignal darf z. B. nicht an einen digitalen Eingang angeschlossen werden).

Programmierung der Anschlüsse

Der Regler ist auf die Lage der einzelnen Ein- und Ausgangssignale zu programmieren. Dies erfolgt im Rahmen der später durchzuführenden Konfiguration, bei der jeder einzelne Anschluss nach folgendem Prinzip festgelegt wird:

- · Angabe des Moduls
- Festlegung des Punkts ("Klemmen")
- Identifikation der angeschlossenen Komponente (z. B. Druckmessumformer/Typ/Druckbereich)

Benutzerhandbuch | Verbundregler, Typ AK-PC 782B

1. Regler

Тур	Funktion	Anwendung
AK-PC 782B	Regler für die Leistungsregelung von NK (10 Verdichter), PV (8 Verdichter) und TK (4 Verdichter). Bis zu 3 Leistungsstufen pro Verdichter, 8 Lüfter und max. 220 Ein-/Ausgänge.	Transkritische CO ₂ -Boosterregelung, Parallelverdichtung / Ölmanagement / Wärmerückgewinnung / CO ₂ -Gasdruck

2. Erweiterungsmodule und Übersicht über Eingänge und Ausgänge

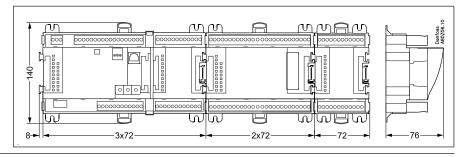
Тур	Analoge Eingänge			Ein-/Aus-Spannu (DI-Signal)	ıngseingänge	Analoge Ausgänge	Schrittmotor Ausgang	Modul mit Umschaltern
	Für Fühler, Druckmess- umformer usw.	Relais (SPDT)	Solid State	Niederspannung (max. 80 V)	Hochspannung (max. 260 V)	0-10 V DC	Für Ventile mit Stufenregelung	Zur Übersteuerung von Relaisausgängen
Regler	11	4	4	-	-	-		-
Erweiterungsmo	odule							
AK-XM 101A	8							
AK-XM 102A				8				
AK-XM 102B					8			
AK-XM 103A	4					4		
AK-XM 204A		8						
AK-XM 204B		8						x
AK-XM 205A	8	8						
AK-XM 205B	8	8						x
AK-XM 208C	8						4	
Folgendes Erwe Es ist nur Platz f	eiterungsmodul kann ür ein Modul.	auf die Platin	e des Reglerr	noduls platziert we	erden.			
AK-OB 110						2		

3. AK-Bedienung und Zubehör

Тур	Funktion	Anwendung				
Bedienung						
AK-ST 500	Software für die Bedienung von AK-Reglern	AK-Bedienung				
-	Kabel zwischen PC und AK-Regler	USB A-B (Standard-IT-Kabel)				
Zubehör	Stromversorgungsmodul 230 V / 115 V bis 24 V DC					
AK-PS 075	18 VA					
AK-PS 150	36 VA	Reglerversorgung				
AK-PS 250	60 VA					
Zubehör	ubehör Externes Display kann an das Reglermodul angeschlossen werden. Zur Anzeige von z. B. Saugdruck					
EKA 163B	Display					
EKA 164B	Displayeinheit mit Bedientasten					
MMIGRS2	Grafisches Display mit Bedientasten					
	Kabel zwischen EKA Display und Regler	Länge = 2 m, 6 m				
-	Kabel zwischen grafischem Display und Regler	Länge = 1,5 m, 3,0 m				
Zubehör	Kommunikationsmodule für Regler, wenn Module nicht da	uerhaft angeschlossen werden können				
AK-CM 102 Kommunikationsmodul		Datenkommunikation für externe Erweiterungsmodule				

Auf den folgenden Seiten finden sich Daten zu den einzelnen Modulen.

2.2 Gemeinsame Daten zu Modulen


Spannungsversorgung	24 V DC/AC ±20 %	
Leistungsaufnahme	AK (Regler)	8 VA
	AK-XM 101, 102, 103, 107, AK-CM 102	2 VA
	AK-XM 204, 205, 208	5 VA
Analogeingänge	Pt 1000 Ohm /0 °C	Auflösung: 0,1 °C Genauigkeit: ±0,5 °C ±0,5 °C zwischen -50 °C und 50 °C ±1 °C zwischen -100 °C und -50 °C ±1 °C zwischen 50 °C und 130 °C
	Druckmessumformer Typ AKS 32R / AKS 2050 MBS 2050 / AKS 32 (1–5 V)	Auflösung: 1 mV Genauigkeit +/- 10 mV
	Andere Druckmessumformer: Ratiometrisches Signal Min- und Max-Druck muss eingestellt werden	Max. Anschluss von 5 Druckmessumformern pro Modul
	Spannungssignal 0 – 10 V	
	Kontaktfunktion (Ein/Aus)	Ein bei R < 20 Ohm Aus bei R > 2 kOhm (Goldkontakte sind nicht erforderlich)
Analoge Ausgänge	0–10 V	Genauigkeit +/- 100 mV
Ein-/Aus- Versorgungsspannungseingänge	Niederspannung 0/80 V AC/DC	Aus: U < 2 V Ein: U > 10 V
	Hochspannung 0/260 V AC	Aus: U < 24 V Ein: U > 80 V
Relaisausgänge	AC-1 (ohmsch)	4 A
SPDT	AC-15 (induktiv)	3 A
	U	Min. 24 V Max. 230 V Nieder- und Hochspannung dürfen nicht an die gleiche Ausgangsgruppe angeschlossen sein
Solid-State-Ausgänge	Zur Anwendung bei häufig geschalteten Belastungen, z.B. Ejektorventile, Ölventile, Lüfter oder AKV-Ventile	Max. 240 V AC, Min. 48 V AC Max. 0,5 A, Leckstrom < 1 mA Max. 1 AKV
Schrittmotorausgänge	Wird benutzt für Ventile mit Schrittmotoreingang	20 – 500 steps/s Separate Versorgung an Schrittmotorausgänge: 24 V AC/DC
Umgebungstemperatur	Beim Transport	-40 bis 70 °C
	Währen des Betriebs:	-20 bis 55 °C, 0 bis 95 % rF (nicht kondensierend) Keine Schockeinwirkungen / Vibrationen
Gehäuse	Werkstoff	PC/ABS
	Klasse	IP10, VBG 4
	Montage	Für Einbau. Panel-Wandanbau oder DIN-Schiene
Gewicht mit Schraubenklemmen	Module der Baureihe 100 / 200 / Regler	Ca. 200 g / 500 g / 600 g
Zulassungen	EU-Niederspannungsrichtlinie und EMV-Anforderungen werden eingehalten.	LVD-geprüft gemäß EN 60730 EMV-geprüft Störfestigkeit gemäß EN 61000-6-2 Emission gemäß EN 61000-6-3
	c AL us	E31024 für PC-Modul
	c (U) us	E357029 für XM- und CM-Module

Die angegebenen Daten gelten für alle Module.

Spezifische Daten werden zusammen mit dem betreffenden Modul angeführt.

Abmessungen

Das Modulmaß ist 72 mm.
Module der Baureihe 100 bestehen
aus einem Modul.
Module der Baureihe 200 bestehen
aus zwei Modulen.
Regler bestehen aus drei Modulen.
Länge einer verbundenen Einheit = n×72 + 8

2.3 Regler

Funktion

Die Baureihe umfasst mehrere Regler. Die Funktion wird von der einprogrammierten Software bestimmt, äußerlich sehen die Regler gleich aus – sie verfügen alle über die gleichen Anschlussmöglichkeiten: 11 analoge Eingänge für Fühler, Druckmessumformer, Spannungssignale und Kontaktsignale.

8 digitale Ausgänge, und zwar 4 Solid-State-Ausgänge und 4 Relaisausgänge.

Spannungsversorgung

Der Regler ist mit 24 Volt AC oder DC zu versorgen.

Die 24-V-Versorgung **darf nicht** weitergeführt und von anderen Reglern benutzt werden, da sie von den Ein- und Ausgängen nicht galvanisch getrennt ist. Das heißt, es **muss** je Regler ein Transformator angewendet werden. Klasse II ist erforderlich. Die Klemmen **dürfen nicht** geerdet werden.

Die Spannungsversorgung möglicher Erweiterungsmodule erfolgt über den Stecker auf der rechten Seite.

Die Trafogröße bestimmt sich aus der Leistungsaufnahme der Gesamtzahl der Module.

Die Spannungsversorgung eines Druckmessumformers hat entweder über den 5-V-Ausgang oder über den 12-V-Ausgang zu erfolgen – je nach Typ des Druckmessumformers.

Datenkommunikation

Ist der Regler Teil eines größeren Systems, muss die Datenkommunikation über eine IP-Verbindung erfolgen. Die Verdrahtung hat gemäß der in einem separaten Dokument angeführten Anleitung für IP-Kommunikation zu erfolgen.

Netzwerkadresse

Für den IP-vernetzten Verbundregler kann ein Adressbereich von **011–199** eingestellt werden. Hier ist eine Zusammenfassung der Adressen im IP-Netzwerk, die für den AK-PC 782B zulässig sind:

- 001: Diese Adresse ist für den Hauptsystemmanager im (gehosteten) Netzwerk reserviert. Der AK-PC 782B kann diese Adresse nicht verwenden.
- 002–010: Diese Adressen sind für nachgeschaltete Systemmanager im (gehosteten) Netzwerk reserviert. Der AK-PC 782B kann keine dieser Adressen verwenden.
- 011–199: Dies ist der Bereich der möglichen Adressen für den AK-PC 782B im IP-Netzwerk (siehe Abb. Netzwerkadresse).

Weitere Informationen über das vom Systemmanager gehostete Netzwerk und dessen Konfiguration finden Sie im Benutzerhandbuch des jeweiligen Systemmanagers. Weitere Informationen finden Sie im Dokument RC8AC von Danfoss.

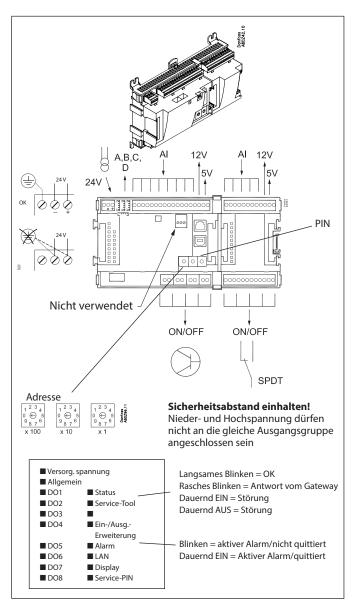
Service-PIN

lst der Regler an das Datenkommunikationskabel angeschlossen, muss das Gateway entsprechend programmiert werden. Dies erfolgt durch Betätigen der PIN-Taste. Die Leuchtdiode "Status" beginnt zu blinken, sobald das Gateway quittiert.

Notiz: Service-Pin wird für AK-SM 8xxA nicht verwendet.

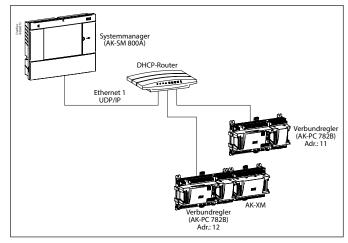
Betrieb

Zur Konfiguration der Reglerbedienung ist das Softwareprogramm "Service Tool" zu benutzen. Das Programm ist auf einem PC zu installieren, der über den vorderen USB-B-Stecker mit dem Regler zu verbinden ist.

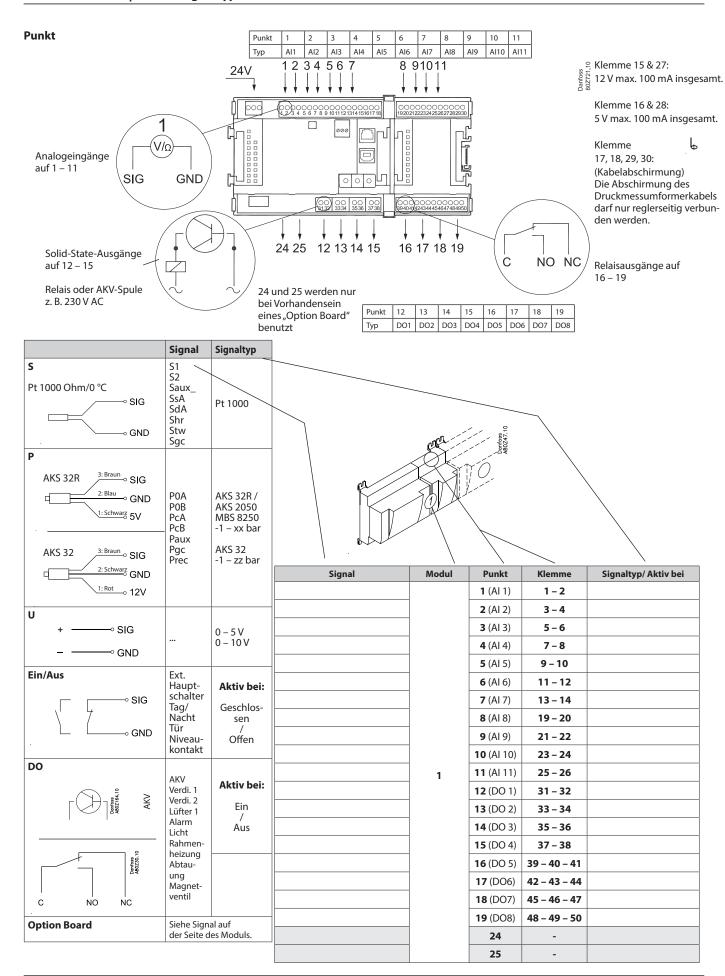

Leuchtdioden

Es sind zwei Leuchtdiodenreihen vorhanden, die Folgendes anzeigen – Linke Reihe:

- · Versorgungsspannung am Regler
- Kommunikation mit der Hauptplatine ist aktiv (Rot = Störung)
- Zustand der Ausgänge DO1 bis DO8


Rechte Reihe:

- Zustand der Software (langsames Blinken = OK)
- · Kommunikation mit "Service Tool"
- Kommunikation mittels IP
- Kommunikation mit AK-CM 102
- Alarm wenn blinkend
 - 1 LED wird nicht benutzt
- · Kommunikation mit Display auf RJ11-Stecker
- Kontakt "Service-Pin" wurde aktiviert



Ein kleines Modul (Option Board) lässt sich auf der Hauptplatine des Reglers platzieren. Das Modul wird weiter unten im Dokument beschrieben.

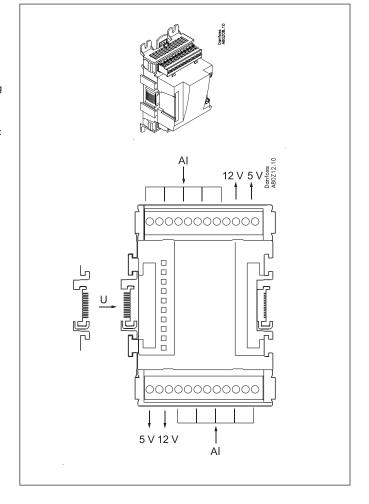
Abb. Netzwerkadresse

2.3.1 Erweiterungsmodul AK-XM 101A

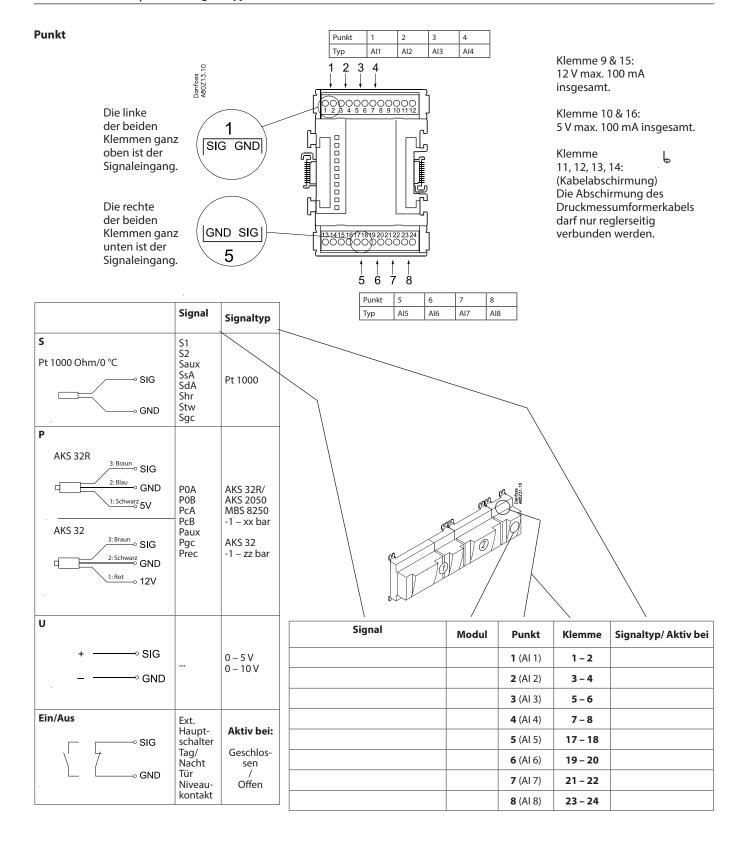
Funktion

Das Modul umfasst 8 analoge Eingänge für Fühler, Druckmessumformer, Spannungssignale und Kontaktsignale.

Spannungsversorgung


Die Spannungsversorgung des Moduls erfolgt über das in der Reihe vorgeschaltete Modul.

Je nach Typ des Druckmessumformers muss dessen Spannungsversorgung entweder über den 5-V-Ausgang oder den 12-V-Ausgang erfolgen.


Leuchtdioden

Nur die beiden oberen werden verwendet. Sie haben folgende Bedeutung:

- · Versorgungsspannung am Modul
- Kommunikation mit dem Regler ist aktiv (Rot = Störung)

2.3.2 Erweiterungsmodul AK-XM 102A / AK-XM 102B

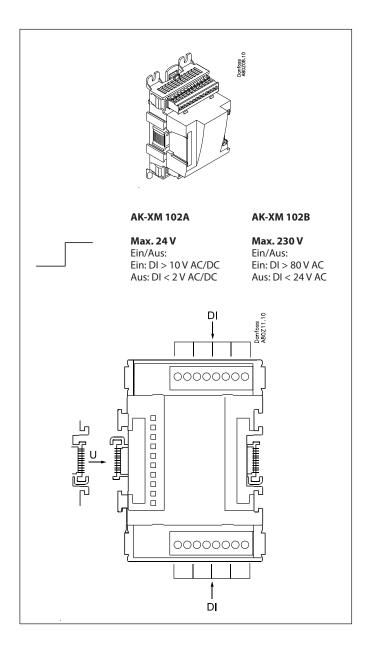
Funktion

Das Modul umfasst 8 analoge Eingänge für Ein-/Aus-Spannungssignale.

Signa

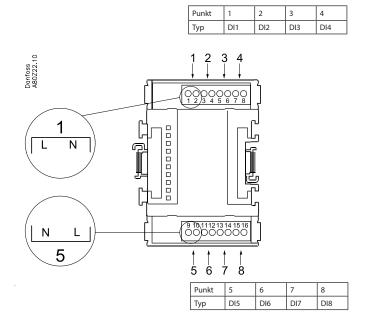
AK-XM 102A ist für Niederspannungssignale. AK-XM 102A ist für Hochspannungssignale.

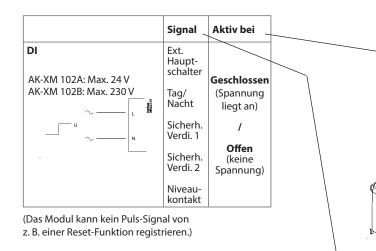
Spannungsversorgung


Die Spannungsversorgung des Moduls erfolgt über das in der Reihe vorgeschaltete Modul.

Leuchtdioden

Sie haben folgende Bedeutung:


- Versorgungsspannung am Modul
- Kommunikation mit dem Regler ist aktiv (Rot = Störung)
- Zustand der einzelnen Eingänge 1 bis 8 (leuchtet = Spannung)


Bei Verwendung von Druckmessumformern, die an Erweiterungsmodule angeschlossen sind, empfiehlt es sich, den mitgelieferten 47 k Ω -Widerstand anzuschließen, um eine ordnungsgemäße Erkennung von Sensorfehlern zu ermöglichen. Weitere Informationen finden Sie im Handbuch RI8HZ552 von Danfoss.

Punkt

	/	/		\
Signal	Modul	Punkt	Klemme	Aktiv bei
		1 (DI 1)	1 – 2	
		2 (DI 2)	3 – 4	
		3 (DI 3)	5 – 6	
		4 (DI 4)	7 – 8	
		5 (DI 5)	9 – 10	
		6 (DI 6)	11 – 12	
		7 (DI 7)	13 – 14	
		8 (DI 8)	15 – 16	

2.3.3 Erweiterungsmodul AK-XM 103A

Funktion

Das Modul umfasst:

 $4\,analoge\,Eingänge\,für\,F\"uhler,\,Druckmessumformer,\,Spannungssignale\,und\,Kontaktsignale.$

4 analoge Spannungsausgänge von 0 – 10 V

Spannungsversorgung

Die Spannungsversorgung des Moduls erfolgt über das in der Reihe vorgeschaltete Modul.

Je nach Typ des Druckmessumformers muss dessen Spannungsversorgung entweder über den 5-V-Ausgang oder den 12-V-Ausgang erfolgen.

Galvanische Trennung

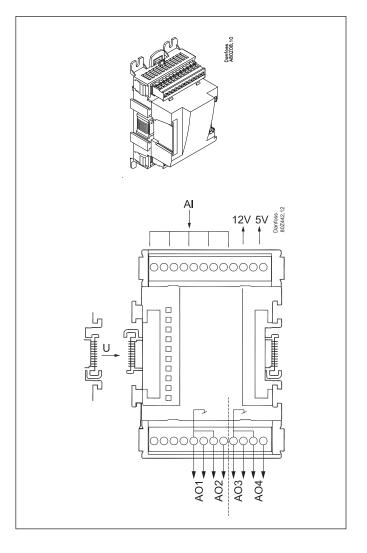
Die Eingänge sind galvanisch von den Ausgängen getrennt. Die Ausgänge AO1 und AO2 sind galvanisch von den Ausgängen AO3 und AO4 getrennt.

Leuchtdioden

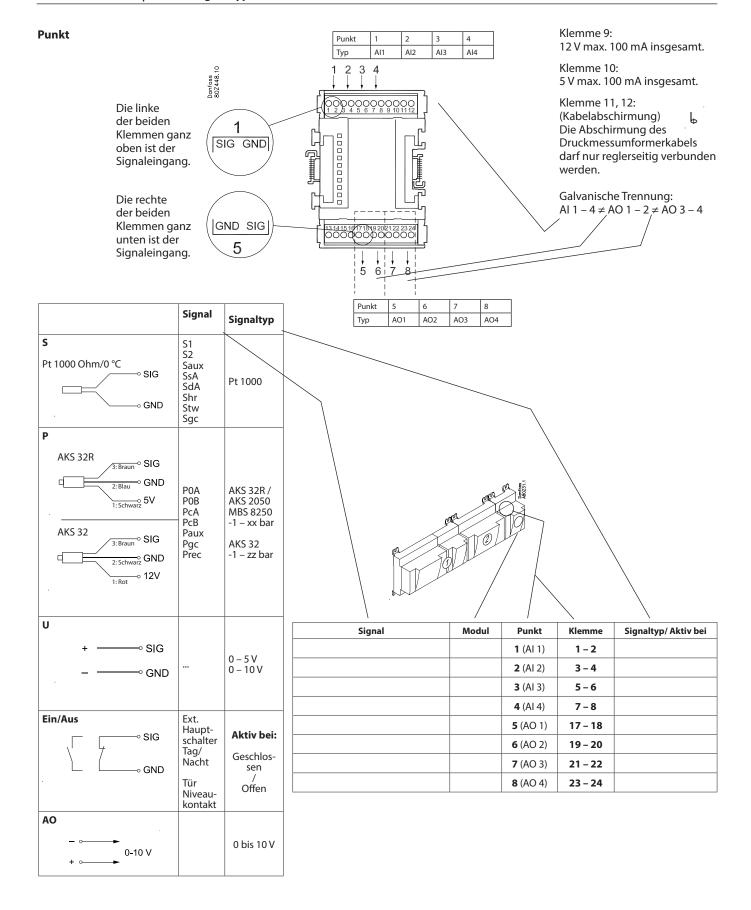
Nur die beiden oberen werden verwendet. Sie haben folgende Bedeutung:

- Versorgungsspannung am Modul
- Kommunikation mit dem Regler ist aktiv (Rot = Störung)

Max. Belastung


 $\begin{array}{l} I<2,5 \text{ mA} \\ R>4 \text{ k}\Omega \end{array}$

Genauigkeit


Analoge Eingänge: +/- 10 mV Analoge Ausgänge: +/- 100 mV

Bei Verwendung von Druckmessumformern, die an Erweiterungsmodule angeschlossen sind, empfiehlt es sich, den mitgelieferten 47 k Ω -Widerstand anzuschließen, um eine ordnungsgemäße Erkennung von Sensorfehlern zu ermöglichen. Weitere Informationen finden Sie im Handbuch RI8HZ552 von Danfoss.

2.3.4 Erweiterungsmodul AK-XM 204A / AK-XM 204B

Funktion

Das Modul umfasst 8 Relaisausgänge.

Spannungsversorgung

Die Spannungsversorgung des Moduls erfolgt über das in der Reihe vorgeschaltete Modul.

Nur AK-XM 204B

Übersteuerung des Relais

Acht Umschalter an der Front ermöglichen die Übersteuerung der Relaisfunktion.

Entweder in Position AUS oder EIN.

In Position "Auto" übernimmt der Regler die Steuerung.

Leuchtdioden

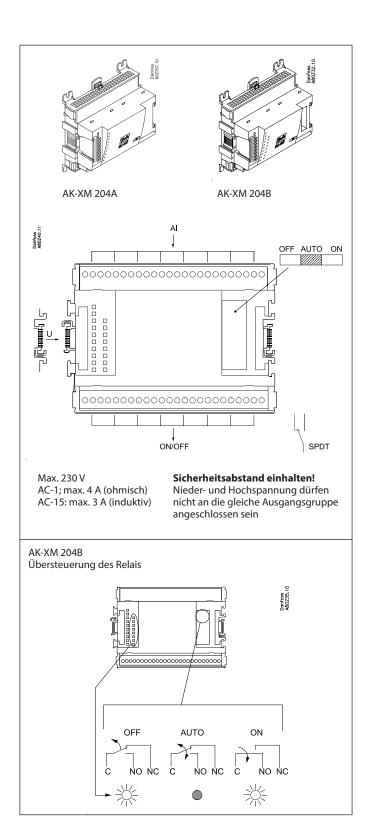
Es sind zwei Leuchtdiodenreihen vorhanden.

Sie haben folgende Bedeutung:

Linke Reihe:

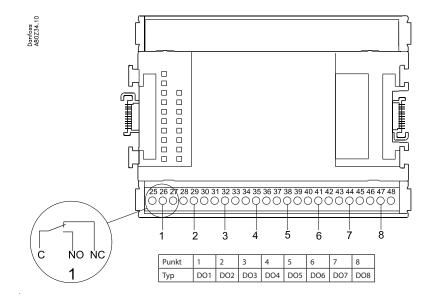
- Versorgungsspannung am Regler
- Kommunikation mit der Hauptplatine ist aktiv (Rot = Störung)
- Zustand der Ausgänge DO1 bis DO8

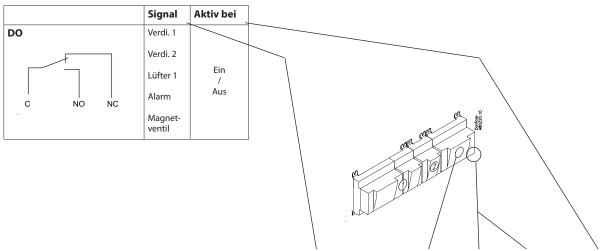
Rechte Reihe: (nur AK-XM 204B):


• Übersteuerung der Relais

EIN = Übersteuerung

AUS = keine Übersteuerung


Sicherungen


Hinter dem Oberteil befindet sich für jeden Ausgang eine Sicherung.

Punkt

Signal	Modul	Punkt	Klemme	Aktiv bei
		1 (DO 1)	25 – 27	
		2 (DO 2)	28 – 30	
		3 (DO 3)	31 – 33	
		4 (DO 4)	34 – 36	
		5 (DO 5)	37 – 39	
		6 (DO 6)	40 - 41 - 42	
		7 (DO 7)	43 - 44 - 45	
		8 (DO 8)	46 - 47 - 48	

2.3.5 Erweiterungsmodul AK-XM 205A / AK-XM 205B

Funktion

Das Modul umfasst:

8 analoge Eingänge für Fühler, Druckmessumformer, Spannungssignale und Kontaktsignale.

8 Relaisausgänge.

Spannungsversorgung

Die Spannungsversorgung des Moduls erfolgt über das in der Reihe vorgeschaltete Modul.

Nur AK-XM 205B

Übersteuerung des Relais

Acht Umschalter an der Front ermöglichen die Übersteuerung der Relaisfunktion.

Entweder in Position AUS oder EIN.

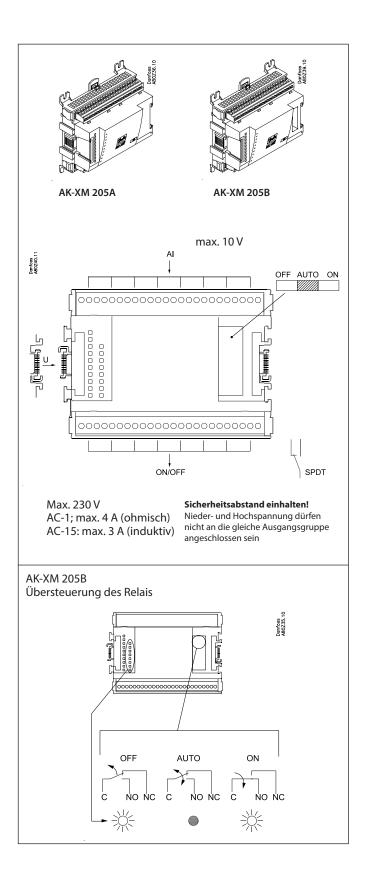
In Position "Auto" übernimmt der Regler die Steuerung.

Leuchtdioden

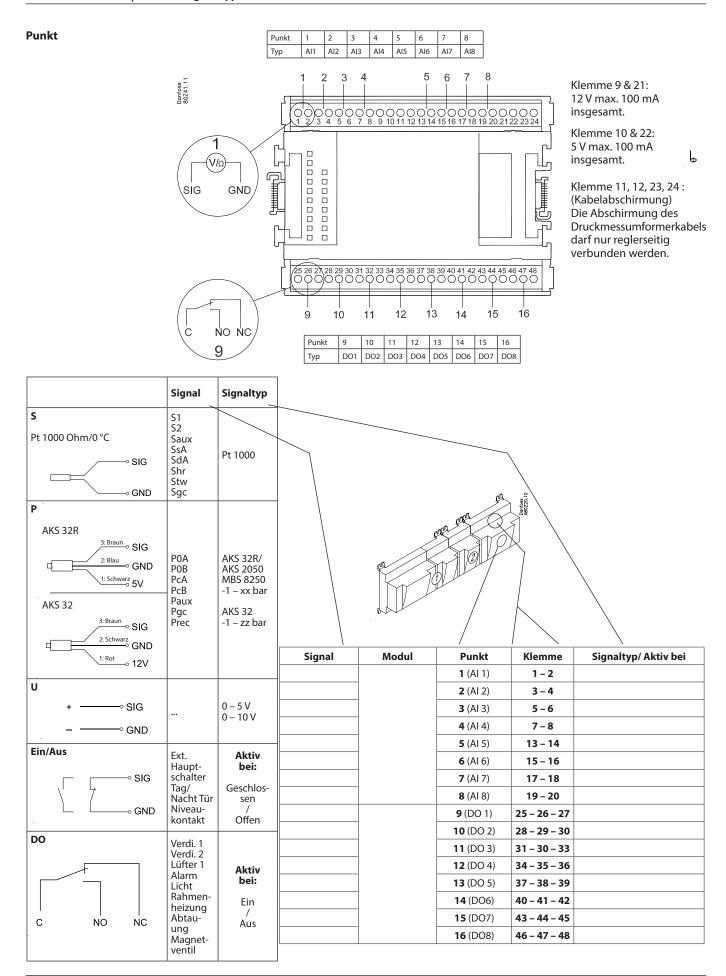
Es sind zwei Leuchtdiodenreihen vorhanden. Sie haben folgende Bedeutung: Linke Reihe:

- · Versorgungsspannung am Regler
- Kommunikation mit der Hauptplatine ist aktiv (Rot = Störung)
- Zustand der Ausgänge DO1 bis DO8 Rechte Reihe: (Nur AK-XM 205B):

meetite heilie. (Nui Ak-XIVI 20.


- Übersteuerung der Relais
 - EIN = Übersteuerung
 - AUS = keine Übersteuerung

Sicherungen


Hinter dem Oberteil befindet sich für jeden Ausgang eine Sicherung.

Bei Verwendung von Druckmessumformern, die an Erweiterungsmodule angeschlossen sind, empfiehlt es sich, den mitgelieferten 47 k Ω -Widerstand anzuschließen, um eine ordnungsgemäße Erkennung von Sensorfehlern zu ermöglichen. Weitere Informationen finden Sie im Handbuch RI8HZ552 von Danfoss.

2.3.6 Erweiterungsmodul AK-XM 208C

Funktion

Das Modul umfasst:

8 analoge Eingänge für Fühler, Druckmessumformer, Spannungssignale und Kontaktsignale.

4 Ausgänge für Schrittmotoren.

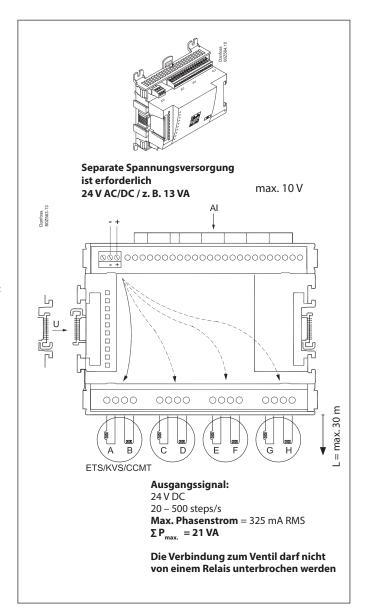
Spannungsversorgung

Die Spannungsversorgung des Moduls erfolgt über das in der Reihe vorgeschaltete Modul. Hier Versorgung mit 5 VA.

Es muss eine zusätzliche und getrennte Stromversorgung installiert werden, die von der Versorgung des Steuerbereichs galvanisch getrennt sein muss. Klasse II ist erforderlich.

(Leistungsbedarf: 7,8 VA für Regler + xx VA pro Ventil).

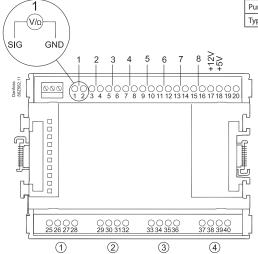
Es werden zwei getrennte USV empfohlen, eine für den Verbundregler und eine weitere für das Modul AK-XM 208C, wenn die Ventile bei einem Ausfall der Spannungsversorgung geöffnet/geschlossen werden müssen. Wenn das Modul AK-CM 102 installiert ist, wird auch eine separate USV empfohlen.


Leuchtdioden

Es ist eine Reihe Leuchtdioden vorhanden, die folgende Bedeutung haben:

- · Versorgungsspannung am Modul
- Kommunikation mit der Hauptplatine ist aktiv (Rot = Störung)
- Schritt 1 bis Schritt 4 OPEN: Grün = Offen
- Schritt 1 bis Schritt 4 CLOSE: Grün = Geschlossen
- Rot blinkend = Fehler am Motor oder Anschluss

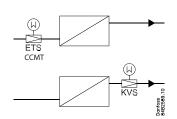
Bei Verwendung von Druckmessumformern, die an Erweiterungsmodule angeschlossen sind, empfiehlt es sich, den mitgelieferten 47 k Ω -Widerstand anzuschließen, um eine ordnungsgemäße Erkennung von Sensorfehlern zu ermöglichen. Weitere Informationen finden Sie im Handbuch RI8HZ552 von Danfoss.


Ventildaten						
Тур	Р					
ETS 12,5 bis ETS 400 KVS 15 bis KVS 42 CCMT 2 – CCMT 8 CCM 10 – CCM 40 CTR 20	1,3 VA					
CCMT 16 – CCMT 42	5,1 VA					
CCMT -3L/5L/8L	4,0 VA					

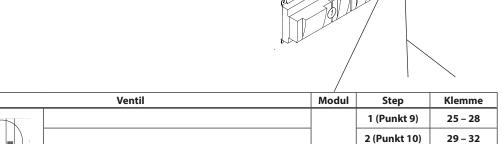
Stromversorgung an AK-XM 208C:

z. B.: $7.8 + (4 \times 1.3) = 13 \text{ VA} \implies AK-PS 075$ z. B.: $7.8 + (4 \times 5.1) = 28.2 \text{ VA} \implies AK-PS 150$

Punkt


Punkt	1	2	3	4	5	6	7	8
Тур	AI1	AI2	AI3	Al4	AI5	Al6	AI7	AI8

Klemme 17: 12 V max. 100 mA insgesamt.


Klemme 18: 5 V max. 100 mA insgesamt.

Klemme 19, 20: L (Kabelabschirmung)

Punkt	9	10	11	12		
Step	1	2	3	4		
Тур	AO					

	1	25	26	27	28
Step /	2	29	30	31	32
Klemme	3	33	34	35	36
	4	37	38	39	40
ETS CCM/CCMT CTR KVS		Weiß	Schwarz	Rot	Grün

В

ETS/KVS/CCMT

3 (Punkt 11)

4 (Punkt 12)

33 – 36

37 – 40

2.3.7 Erweiterungsmodul AK-OB 110

Funktion

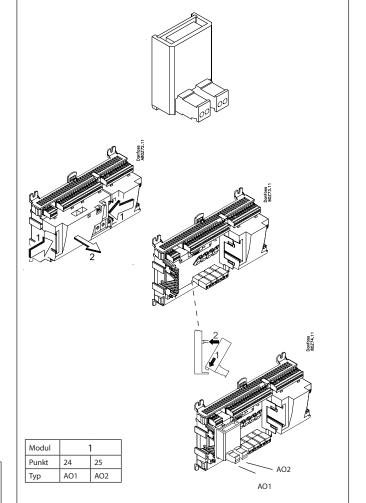
Das Modul umfasst zwei analoge Spannungsausgänge à 0–10 V.

${\bf Spannung sversorgung}$

Die Spannungsversorgung des Moduls erfolgt über das Reglermodul.

Platzierung

Das Modul ist auf der Platine im Inneren des Reglermoduls platziert.


Punkt

Die beiden Ausgänge haben Punkt 24 und 25. Sie werden auf einer vorausgehenden Seite gezeigt, auf der auch der Regler beschrieben ist.

Max. Belastung I < 2,5 mA R > 4 kOhm

Genauigkeit

Analoge Ausgänge: +/- 100 mV

AO	-	AO	0 – 10 V
	+ •		

2.3.8 Erweiterungsmodul EKA 163B / EKA 164B

Funktion

Anzeige von wichtigen Messungen des Reglers, z. B. Möbeltemperatur, Saugdruck oder Verflüssigungsdruck.

Die Einstellung der einzelnen Funktionen kann mittels der Funktionstasten am Display erfolgen.

Der verwendete Regler bestimmt, welche Messungen und Einstellungen erfolgen können.

Anschluss

Das Erweiterungsmodul wird mittels Kabel mit Steckanschlüssen mit dem Reglermodul verbunden. Je Modul ist ein Kabel zu verwenden. Das Kabel ist in verschiedenen Längen lieferbar.

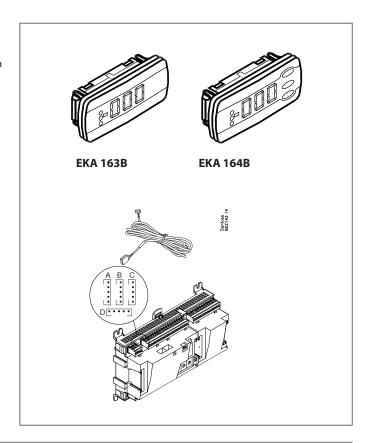
Beide Displaytypen (mit oder ohne Funktionstasten) können sowohl an Displayausgang A, B, C als auch D angeschlossen werden. Beispiel:

A: P0. Saugdruck in °C.

B: Pc. Verflüssigungsdruck in °C.

Wenn der Regler startet, wird im Display der Ausgang gezeigt, der angeschlossen ist.

- - 1 = Ausgang A
- --2 = Ausgang B


usw.

Platzierung

Das Erweiterungsmodul kann in einem Abstand von bis zu 15 m vom Reglermodul angebracht werden.

Punkt

Die Festlegung eines Displaymodulpunkts ist nicht erforderlich – es kann einfach angeschlossen werden.

2.3.9 Grafisches Display MMIGRS2

Funktion

Einstellung und Anzeige der Werte im Regler.

Anschluss

Das Display wird über ein Kabel mit RJ11-Steckanschlüssen an den Regler angeschlossen.

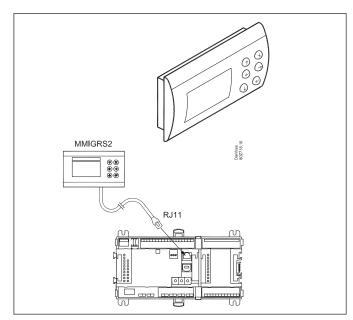
Spannungsversorgung

Wird vom Regler über Kabel und RJ11-Stecker empfangen. Keine separate Spannungsversorgung an dieses Display anschließen.

Terminierung

Das Display muss terminiert werden. Stellen Sie eine Verbindung zwischen den Klemmen H und R her. (AK-PC 782B ist intern terminiert.)

Platzierung


Das Display kann in einem Abstand von max. 3 m zum Regler platziert werden.

Punkt/Adresse

Die Festlegung eines Displaypunkts ist nicht erforderlich

– es kann einfach angeschlossen werden.

Die Adresse muss jedoch geprüft werden. Siehe die dem Regler beiliegenden Anleitungen.

Um für Zugang zu sorgen, muss das Display angeschlossen und die Adresse des MMIGRS2 aktiviert werden.

Einstellung:

- 1. Halten Sie die Tasten "x" und "Enter" fünf Sekunden lang gedrückt. Das BIOS-Menü wird angezeigt.
- Wählen Sie die Zeile "MCX-Auswahl" aus und betätigen Sie die "Enter"-Taste.
- 3. Wählen Sie die Zeile "Man-Auswahl" aus und betätigen Sie die "Enter"-Taste.
- 4. Die Adresse wird angezeigt. Achten Sie darauf, dass es sich um "001" handelt, und drücken Sie dann die "Enter"-Taste. Anschließend werden Daten vom Regler geladen.

2.3.10 Stromversorgungsmodul AK-PS 075 / 150 / 250

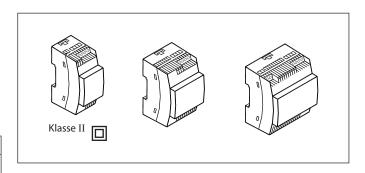
Funktion

24-V-Versorgung an Regler.

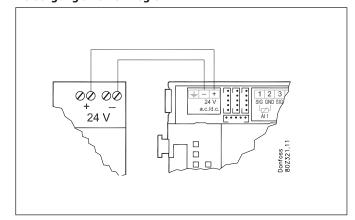
Spannungsversorgung

230 V AC oder 115 V AC (von 100 V AC bis 240 V AC)

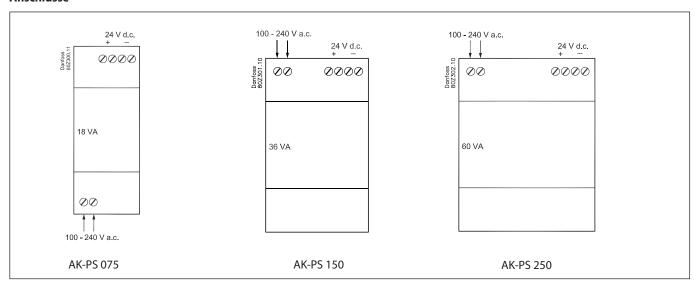
Platzierung


Auf DIN-Schiene

Leistung


Тур	Ausgangsspannung	Ausgangsstrom	Leistung
AK-PS 075	24 V DC	0,75 A	18 VA
AK-PS 150	24 V DC (justierbar)	1,5 A	36 VA
AK-PS 250	24 V DC (justierbar)	2,5 A	60 VA

Maße


Тур	Höhe	Breite
AK-PS 075	90 mm	36 mm
AK-PS 150	90 mm	54 mm
AK-PS 250	90 mm	72 mm

Versorgung an einen Regler

Anschlüsse

2.3.11 Kommunikationsmodul AK-CM 102

Funktion

Bei dem Modul handelt es sich um ein neues Kommunikationsmodul, sodass die Reihe der Erweiterungsmodule unterbrochen werden kann. Das Modul kommuniziert über eine Datenübertragung mit dem Regler und sorgt für den Austausch von Informationen zwischen dem Regler und den angeschlossenen Erweiterungsmodulen.

Anschluss

Das Kommunikationsmodul und der Regler sind mit RJ45-Steckern ausgestattet.

Es **darf sonst nichts** an diese Datenübertragung angeschlossen werden; maximal 5 Kommunikationsmodule können an einen Regler angeschlossen werden.

Kommunikationskabel

Ein Meter von Folgendem liegt bei: ANSI/TIA 568 B/C CAT5 UTP-Kabel mit RJ45-Steckern.

Anordnung

Max. 30 m vom Regler entfernt.

(Die Gesamtlänge der Kommunikationskabel beträgt 30 m.)

Spannungsversorgung

An das Kommunikationsmodul muss eine Spannung von 24 V AC oder DC angeschlossen werden.

Die 24-V-Spannung kann aus derselben Versorgungsquelle stammen, über die auch der Regler mit Spannung versorgt wird.

(Die Spannungsversorgung des Kommunikationsmoduls ist galvanisch von den angeschlossenen Erweiterungsmodulen getrennt.)

Die Klemmen dürfen nicht geerdet werden.

Die Leistungsaufnahme wird durch die Leistungsaufnahme

der Gesamtanzahl der Module bestimmt.

Die Litzenlast des Reglers darf 32 VA nicht überschreiten.

Die Litzenlast eines AK-CM 102 darf 20 VA nicht überschreiten.

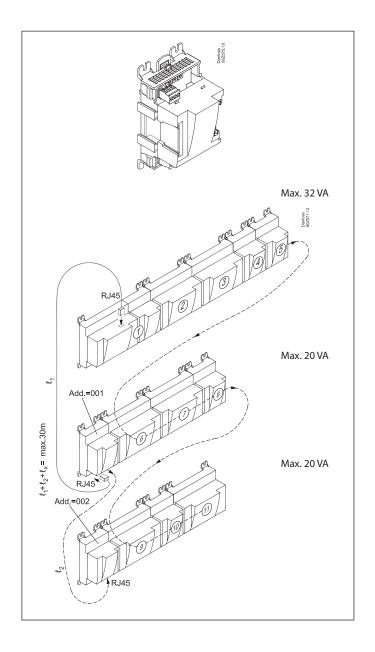
Punkt

Anschlusspunkte an den I/O-Modulen werden so festgelegt, als wären die Module Erweiterungen voneinander.

Adresse

Die Adresse des ersten Kommunikationsmoduls wird auf 1 eingestellt. Ein beliebiges zweites Modul wird auf 2 eingestellt. Maximal 5 Module können angesteuert werden.

Terminierung


Der Terminierungsschalter am letzten Kommunikationsmodul wird eingeschaltet.

Der Regler sollte dauerhaft eingeschaltet bleiben.

Warnung!

Zusätzliche Module können erst nach der Installation des letzten Moduls installiert werden (in diesem Fall nach der Installation von Modul Nr. 11; siehe Skizze).

Nach der Konfiguration darf die Adresse nicht geändert werden.

2.4 Vorwort zum Design

Beim Planen der Anzahl der Erweiterungsmodule ist auf Folgendes zu achten. Möglicherweise kann ein Signal geändert werden, sodass kein zusätzliches Modul nötig ist.

- Es gibt drei Möglichkeiten für den Empfang eines EIN-/AUS-Signals.
 Entweder als Kontaktsignal am analogen Eingang oder als Spannung auf dem Nieder- oder dem Hochspannungsmodul.
- Ein EIN-/AUS-Ausgangssignal kann auf zwei Weisen abgegeben werden. Entweder als Relaiskontakt oder mit Solid-State. Der Hauptunterschied ist die zugelassene Belastung sowie die Tatsache, dass der Relaiskontakt über einen Abschaltkontakt verfügt.

Nachfolgend wird eine Reihe von Funktionen und Anschlussmöglichkeiten beschrieben, die bei der Planung der Regelung in Betracht kommen können. Der Regler umfasst mehr Funktionen als die hier angeführten, die hier nur Erwähnung finden, um den Bedarf an Anschlüssen festlegen zu können.

Funktionen

Uhrfunktion

Uhrfunktion und Sommer-/Winterzeitwechsel sind im Regler vorgesehen. Bei Stromausfall bleibt die Uhreinstellung mindestens 12 Stunden lang erhalten.

Die Uhreinstellung wird aktualisiert, wenn der Regler mit einem Netzwerk mit System Manager verbunden ist.

Start/Stopp der Regelung

Die Regelung lässt sich mithilfe der Software starten und stoppen. Auch ein externer Start/Stopp kann angeschlossen werden.

Warnung!

Die Funktion stoppt jegliche Regelung, einschließlich der Hochdruckregelung.

Überdruck kann zu einem Ladungsverlust führen.

Ein- und Ausschalten von Verdichtern

Ein externer Start/Stopp kann angeschlossen werden.

Alarmfunktion

Soll der Alarm zu einem Signalgeber geleitet werden, ist ein Relaisausgang zu benutzen.

In-Betrieb-Funktion

Ein Relais kann reserviert werden, das bei normaler Regelung aktiviert ist. Das Relais wird freigegeben, wenn die Regelung über den Hauptschalter gestoppt wird oder der Regler ausfällt.

Zusätzliche Temperaturfühler und Druckfühler

Sollen neben der Regelung zusätzliche Messungen vorgenommen werden, können zusätzliche Fühler an die analogen Eingänge angeschlossen werden.

Zwangssteuerung

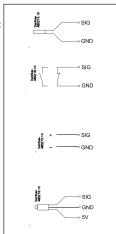
Die Software enthält eine Option zur Zwangssteuerung. Wird ein Erweiterungsmodul mit Relaisausgängen verwendet, kann das Oberteil mit Umschaltern ausgerüstet sein. Diese Umschalter können die einzelnen Relais entweder in Ein- oder Aus-Position übersteuern. Die Verdrahtung ist mit einem Sicherheitsrelais durchzuführen. Siehe Regelungsfunktionen.

Datenkommunikation

Das Reglermodul verfügt über Anschlüsse für die IP-Datenkommunikation. Die Anforderungen an die Installation sind im Danfoss RC8AC-Dokument beschrieben.

Benutzerhandbuch | Verbundregler, Typ AK-PC 782B

Anschlüsse


Prinzipiell finden sich folgende Anschlusstypen:

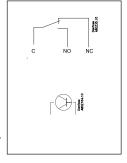
Analoge Eingänge "Al"

Dieses Signal ist an zwei Klemmen anzuschließen.

Es können folgende Signale empfangen werden:

- Temperatursignal von einem Pt-1000-Ohm-Temperaturfühler
- · Pulssignal oder Reset-Signal
- Kontaktsignal, wobei der Eingang kurzgeschlossen beziehungsweise geöffnet wird
- Spannungssignal von 0 bis 10 V
- Signal von einem Druckmessumformer des Typs AKS 32, AKS 32R, AKS 2050 oder MBS 8250.
- Die Spannungsversorgung des Druckmessumformers erfolgt über die Klemmenreihe des Moduls, wo sowohl eine 5-V- als auch eine 12-V-Versorgung vorhanden ist. Bei der Programmierung ist der Druckbereich des Druckmessumformers einzustellen.

EIN-/AUS-Ausgangssignale "DO" Es gibt zwei Typen, und zwar:


Relaisausgänge

Alle Relaisausgänge haben Wechselkontakt, um die gewünschte Funktion bei spannungslosem Regler zu ermöglichen.

· Solid-State-Ausgänge

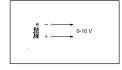
Reserviert für Ejektorventile, Ölventile und AKV-Ventile, aber der Ausgang lässt sich ähnlich wie ein Relaisausgang mit einem externen Relais verbinden.

Der Ausgang ist nur am Reglermodul vorhanden.

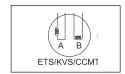
Bei der Programmierung ist die Funktion einzustellen:

- · Aktiv, bei aktiviertem Ausgang
- · Aktiv, bei deaktiviertem Ausgang.

EIN-/AUS-Spannungsversorgungseingänge "DI"


Dieses Signal ist an zwei Klemmen anzuschließen.

- Das Signal muss zwei Niveaus haben, entweder "0" V oder "Spannung" am Eingang. Für diesen Signaltyp gibt es zwei verschiedene Erweiterungsmodule:
 - Niederspannungssignale, z. B. 24 V
 - Hochspannungssignale, z. B. 230 V



Analoges Ausgangssignal "AO"Dieses Signal ist anzuwenden, we

Dieses Signal ist anzuwenden, wenn ein Steuersignal an einen externen Apparat, z. B. einen Frequenzumrichter, gesendet werden soll. Bei der Programmierung ist der Signalbereich einzustellen: 0–5 V, 1–5 V, 0–10 V oder 2–10 V.

Pulssignal für die Schrittmotoren.
Dieses Signal wird von Ventilmotoren des Typs
ETS, KVS, CCM und CCMT verwendet.
Der Ventiltyp wird bei der Programmierung
eingestellt.

Bei der Programmierung ist die Funktion einzustellen:

- Aktiv, bei spannungslosem Eingang
- Aktiv, bei unter Spannung liegendem Eingang.

Begrenzungen

Da das System hinsichtlich der Anzahl der angeschlossenen Einheiten äußerst flexibel ist, muss geprüft werden, ob die getroffene Wahl den wenigen auferlegten Begrenzungen entspricht.

Die Komplexität des Reglers bestimmt sich aus der Software, der Größe des Prozessors und der Größe des Speichers. Der Regler verfügt dabei über eine bestimmte Anzahl von Anschlüssen, von denen Daten erfasst werden können, und anderen, die mit Relais gekoppelt sind.

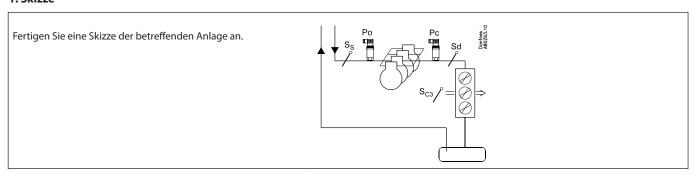
- ✓ Die Gesamtmenge aller Anschlüsse darf 220 nicht überschreiten (bei AK-PC 782B).
- ✓ Die Anzahl der Erweiterungsmodule ist zu begrenzen, die Gesamtleistung in einer Reihe darf 32 VA (einschließlich Regler) nicht überschreiten. Wenn das Kommunikationsmodul AK-CM 102 verwendet wird, darf keine Reihe des AK-CM 102 20 VA überschreiten (einschl. AK-CM 102). Es dürfen nicht mehr als 18 Module vorhanden sein (Regler + 17 Module).
- Es dürfen nicht mehr als 5 Druckmessumformer an ein Reglermodul angeschlossen werden.
- ✓ Es dürfen nicht mehr als 5 Druckmessumformer an ein Erweiterungsmodul angeschlossen werden.

Gemeinsamer Druckmessumformer

Wenn mehrere Regler ein Signal vom gleichen Druckmessumformer empfangen, muss das Versorgungskabel der entsprechenden Regler verdrahtet sein, sodass es nicht möglich ist, einen Regler ohne die anderen Regler auszuschalten. (Durch Ausschalten eines Reglers wird das Signal abgeschwächt. Alle anderen Regler empfangen dann ein Signal, das zu niedrig ist.)

Ejektorventile

Wenn Ejektorventile verwendet werden, müssen die kleinsten an die Solid-State-Ausgänge angeschlossen werden.



2.5 Aufbau einer Verdichter- und Verflüssigerregelung

Verfahren:

- 1. Fertigen Sie eine Skizze der betreffenden Anlage an.
- 2. Prüfen Sie, ob die Reglerfunktionen für die gewünschte Anwendung ausreichen.
- 3. Überlegen Sie, welche Anschlüsse erforderlich sind.
- Benutzen Sie ein Planungsschema. → Notieren Sie alle Anschlüsse. → Zählen Sie diese zusammen.
- 5. Sind am Reglermodul ausreichend Anschlüsse vorhanden? Falls nicht, lässt sich dies erzielen, indem man ein EIN-/AUS-Eingangssignal von einem Spannungssignal in ein Kontaktsignal ändert, oder wird ein Erweiterungsmodul benötigt?
- 6. Legen Sie fest, welche Erweiterungsmodule verwendet werden sollen.
- 7. Prüfen Sie, ob die Begrenzungen eingehalten werden.
- 8. Berechnen Sie die Gesamtlänge der Module.
- 9. Die Module sind zu koppeln.
- 10. Die Anschlussstellen sind festzulegen.
- 11. Fertigen Sie ein Anschlussdiagramm oder ein Symboldiagramm an.
- 12. Spannungsversorgung / Trafogröße

1. Skizze

2. Verdichter- und Verflüssigerfunktionen

	AK-PC 782B
Anwendung	
Sowohl Verdichter- als auch Verflüssigergruppe	х
Boostergruppe	х
Parallelverdichter	х
Regelung der Verdichterleistung	
Regelungsfühler. P0	х
PI-Regelung	х
Max. Anzahl der Verdichterstufen: MT+IT / LT	10+8/4
Max. Anzahl der Entlastungen je Verdichter	3
Gleiche Verdichterleistungen	х
Unterschiedliche Verdichterleistungen	х
Drehzahlregelung von ein oder zwei Verdichtern	х
Betriebszeitausgleich	х
Min. Wiedereinschaltzeit	х
Min. Ein-Zeit	х
Ejektorregelung	х
Flüssigkeitseinspritzung in die Saugleitung	х
Flüssigkeitseinspritzung in den Wärmetauscher von Kaskadenanlagen	х
Externer Start/Stopp von Verdichtern	х

Ölmanagement	
Sammlerdruckregelung	х
Ölstandüberwachung im Sammler	х
Steuerung des Ölstands im Ölabscheider	х
Saugdruck-Sollwert	
Übersteuerung durch P0-Optimierung	х
Übersteuerung durch "Nachtabsenkung"	х
Übersteuerung durch "0–10 V-Signal"	х
Regelung der Verflüssigerleistung	
Regelungsfühler. Sgc oder S7	х
Stufenschaltung	х
Max. Anzahl der Stufen	8
Drehzahlregelung	х
Stufen- und Drehzahlregelung	х
Drehzahlregelung erste Stufe	х
Begrenzung der Drehzahl im Nachtbetrieb	х
Wärmerückgewinnungsfunktion für Leitungswasserregelung	х
Wärmerückgewinnungsfunktion für Heizung	х
Regelung des Gaskühlers (Hochdruckventil). Ggf. Parallelventil	х

Benutzerhandbuch | Verbundregler, Typ AK-PC 782B

Verflüssigerdruck Sollwert	
Variabler Verflüssigungsdruck-Sollwert	х
Sollwerteinstellung für Wärmerückgewinnungsfunktionen	х
Sicherheitsfunktionen	
Min. Saugdruck	х
Max. Saugdruck	х
Max. Verflüssigungsdruck	х
Max. Druckgastemperatur	х
Min./max. Überhitzung	х
Sicherheitsüberwachung der Verdichter	х
Gemeinsame Hochdrucküberwachung der Verdichter	х

Weitere Angaben zu den Funktionen

Verdichter

Regelung von bis zu 10 NK- und 8 PV-Verdichtern sowie bis zu 4 TK-Verdichtern, alle mit bis zu 3 Leistungsstufen je Verdichter. Die Drehzahl von Verdichter Nr. 1 und 2 lässt sich regeln. Als Regelfühler kann verwendet werden: Ps – Saugdruck

Verflüssiger

Regelung von bis zu 8 Verflüssigerstufen.

Die Drehzahl von Lüftern lässt sich regeln. Entweder alle auf ein Signal oder nur der erste von mehreren Lüftern. EC-Motor anwendbar. Relaisausgänge und "Solid-State"-Ausgänge können je nach Bedarf verwendet werden.

Als Regelfühler kann verwendet werden:

1) Sgc – Temperatur am Gaskühleraustritt

(es können ein oder zwei Sgc-Fühler konfiguriert werden).

2) S7 - Heißsoletemperatur

(Pc wird hier als Hochdrucksicherheit verwendet).

Drehzahlregelung bei Verflüssigerlüftern

Die Funktion erfordert ein analoges Ausgangsmodul. Ein Relaisausgang kann zum Start/Stopp der Drehzahlregelung dienen. Ggf. können auch Lüfter an Relaisausgänge gekoppelt werden.

Pulsweitenmodulierte Entlastung

Bei Verwendung eines Verdichters mit PWM-Entlastung sollte die Entlastung mit einem der vier Solid-State-Ausgänge des Reglers verbunden werden.

Wärmerückgewinnung

Für die Warmwasser- und Wärmebehälter zur Beheizung gibt es verschiedene Einstellmöglichkeiten:

Der Regler verwaltet, nach Priorität sortiert: 1 – Leitungswasser, 2 – Heizung, 3 – Gaskühler, wodurch die überschüssige Restwärme entfernt wird.

Sicherheitsüberwachung der Verflüssigerlüfter	х				
Allgemeine Alarmfunktionen mit Zeitverzögerung	10				
Verschiedenes					
Zusätzliche Fühler	7				
Inject On-Funktion	х				
Anschlussmöglichkeit für separates Display	4+1				
Separate Thermostatfunktionen	10				
Separate Druckschalterfunktionen	5				
Separate Spannungsmessungen	5				
Pl-Regelung	3				
Max. Ein- und Ausgänge	220				

Sicherheitskreis

Sind Signale von einem oder mehreren Gliedern eines Sicherheitskreises zu verarbeiten, ist jedes Signal einem EIN-/AUS-Eingang zuzuordnen.

Tag/Nacht-Signal für Anhebung des Saugdrucks

Die Uhrfunktion kann verwendet werden, allerdings kann stattdessen auch ein externes EIN-/AUS-Signal eingesetzt werden. Wird die Funktion "P0-Optimierung" verwendet, wird kein Signal zur Erhöhung des Saugdrucks gegeben. Dafür sorgt die P0-Optimierung.

Übersteuerungsfunktion "Inject ON"

Die Funktion schließt das Expansionsventil in der Verdampferregelung, wenn kein Verdichter gestartet werden kann. Die Funktion lässt sich mittels Datenkommunikation auslösen oder

Separate Thermostat- und Druckschalterfunktionen

kann über einen Relaisausgang verdrahtet werden.

Je nach Bedarf können mehrere Thermostate eingesetzt werden. Die Funktion erfordert ein Fühlersignal und einen Relaisausgang. Im Regler gibt es Einstellungen für die Ein- und Ausschaltwerte. Eine zugehörige Alarmfunktion kann ebenfalls benutzt werden.

Separate Spannungsmessungen

Je nach Bedarf können mehrere Spannungsmessungen eingesetzt werden. Das Signal kann z. B. 0–10 V sein. Die Funktion erfordert ein Spannungssignal und einen Relaisausgang. Im Regler gibt es Einstellungen für die Ein- und Ausschaltwerte. Eine zugehörige Alarmfunktion kann ebenfalls benutzt werden.

Die Funktionen werden in Kapitel 5 näher beschrieben.

3. Anschlüsse

Nachfolgend eine Übersicht über die verfügbaren Anschlüsse. Die Texte sind im Zusammenhang mit dem auf der nächsten Seite dargestellten Schema zu lesen.

Analogeingänge Temperaturfühler

- Ss (Sauggastemperatur)
 Ist bei Verdichterregelung immer zu verwenden.
- Sd (Druckgastemperatur)
 Ist bei Verdichterregelung immer zu verwenden.
- Sc3 (Außentemperatur)
- Bei Regelung mit variablem Verflüssigersollwert zu verwenden.
- S7 (Heißsole-Rücklauftemperatur)
 Zu verwenden, wenn S7 als Regelungsfühler für den Verflüssiger gewählt wurde.
- Saux (1 4), zusätzliche Temperaturfühler
 Es können bis zu vier zusätzliche Fühler zur Überwachung und Datenerfassung angeschlossen werden. Diese Fühler können für allgemeine Thermostatfunktionen verwendet werden.
- Stw2, 3, 4 und 8 (Temperaturfühler für Wärmerückgewinnung)
 Bei Regelung mit heißem Leitungswasser zu verwenden.

- Shr2, 3, 4 und 8 (Temperaturfühler für Wärmerückgewinnung)
 Bei Regelung mit Wärmebehälter für Heizung zu verwenden.
- Sgc (Temperaturfühler für Gaskühlerregelung)
 Ist innerhalb von einem Meter nach dem Gaskühler zu platzieren.
- Shp (Temperaturfühler, wenn das Kältemittel außerhalb des Gaskühlers geleitet werden kann).

Druckmessumformer

- P0 Saugdruck
 - Ist bei Verdichterregelung immer zu verwenden (Frostschutz).
- Pc Verflüssigungsdruck
- Ist bei Verdichter- und Verflüssigerregelung immer zu verwenden.
- Prec. Ölsammlerdruck. Ist für die Sammlerdruckregelung zu verwenden.
- · Pgc Gaskühlerdruck.
- Prec. Druckanzeige im CO₂-Behälter.
- Paux (1 5)

Es können bis zu fünf zusätzliche Druckmessumformer zur Überwachung und Datenerfassung angeschlossen werden. Diese Fühler können für allgemeine Pressostatfunktionen verwendet werden.

Hinweis: Ein Druckmessumformer des Typs AKS 32, AKS 32R oder MBS 8250 kann Signale an maximal fünf Regler liefern.

Spannungssignal

· Ext. Ref.

Ist bei Empfang eines Sollwert-Übersteuerungssignals von einer anderen Steuerung zu verwenden.

Spannungseingänge (1 – 5)

Es können bis zu fünf zusätzliche Spannungssignale zur Überwachung und Datenerfassung angeschlossen werden. Diese Signale werden für allgemeine Spannungseingangsfunktionen verwendet.

Ein-/Aus-Eingänge

Kontaktfunktion (bei einem analogen Eingang) oder Spannungssignal (bei einem Erweiterungsmodul)

- Gemeinsamer Sicherheitseingang für alle Verdichter (z. B. gemeinsamer HP/LP Pressostat)
- Bis zu 6 Signale vom Sicherheitskreis jedes Verdichters
- Signal vom Sicherheitskreis der Verflüssigerlüfter
- Evtl. Signal vom Sicherheitskreis des Frequenzumrichters
- Externer Regelungsstart/-stopp
- Externes Tag/Nacht-Signal (Erhöhen/Senken des Saugdruck-Sollwerts). Die Funktion wird bei Anwendung der P0-Optimierungsfunktion nicht benutzt.
- DI Alarm (1 10) Eingänge Es können bis zu 10 zusätzliche EIN-/AUS-Signale für allgemeine Alarme zur Überwachung und Datenerfassung angeschlossen werden.
- · Strömungsschalter für die Wärmerückgewinnung
- Niveauschalter
- · Niveauregelung am Flüssigkeitsabscheider

EIN-/AUS-Ausgänge Relaisausgänge

- Verdichter
- Entlastungen
- Lüftermotor
- Injection-On-Funktion (Signal für Verdampferregelung. Eine pro Sauggruppe)
- Start/Stopp der Flüssigkeitseinspritzung in der Saugleitung
- Start/Stopp von Dreiwegeventil bei Wärmerückgewinnung
- EIN-/AUS-Signal für Start/Stopp der Drehzahlregelung
- Alarmrelais. In-Betrieb-Relais.
- Statusrelais: Fluten erlaubt/nicht erlaubt
- EIN-/AUS-Signal von allgemeinen Thermostaten (1 10), Pressostaten (1-5) oder Spannungseingangsfunktionen (1-5).
- Ölventile

Solid-State-Ausgänge

Diese Ausgänge sind hauptsächlich für den Anschluss von Ejektor-, Öl- oder AKV-Ventilen gedacht.

Die Solid-State-Ausgänge am Reglermodul können für die gleichen Funktionen verwendet werden, die unter "Relaisausgänge" aufgeführt werden. (Bei Spannungsausfall am Regler ist der Ausgang immer "AUS".) Analoger Ausgang

- · Drehzahlregelung der Verflüssigerlüfter
- Drehzahlregelung des Verdichters
- Drehzahlregelung der Pumpen für die Wärmerückgewinnung
- Regelungssignal für Hochdruckventil Vhp (ggf. Schrittmotorsignal).
- · Schrittmotorsignal für Heißgas-Bypassventil

Beispiel

Verdichtergruppe:

MT-Kreislauf:

- · Drei Verdichter im Zyklusbetrieb. Einer drehzahlgeregelt
- · Sicherheitsüberwachung der einzelnen Verdichter
- Gemeinsame Hochdrucküberwachung
- Po-Einstellung -10 °C, Po-Optimierung über Systemeinheit

LT-Kreislauf:

- Zwei Verdichter im Zyklusbetrieb. Einer drehzahlgeregelt
- · Sicherheitsüberwachung der einzelnen Verdichter
- · Gemeinsame Hochdrucküberwachung
- Po-Einstellung -30 °C, Po-Optimierung über Systemeinheit

IT-Kreislauf:

- · Ein Verdichter, drehzahlgeregelt
- · Sammler-Sollwert 36 bar

Hochdruckregelung:

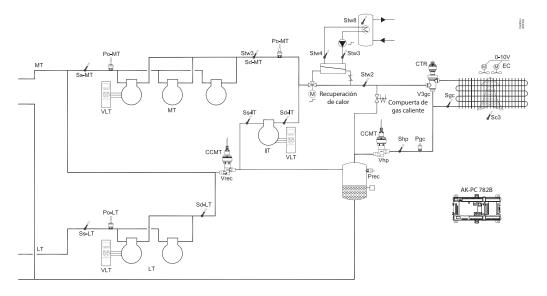
- · Wärmerückgewinnung für Leitungswasser
- Gaskühler
- · Lüfter, drehzahlgeregelt

Sammler:

- Optimaler CO₂-Sammlerdruck
- Überwachung CO₂-Niveau in Sammler
- Überwachung von Hoch- und Niederdruck
- · Regelung der Temperatur im Leitungswassersammler, 55 °C

Lüfter im Maschinenraum

· Thermostatgeregelter Lüfter im Maschinenraum


Sicherheitsfunktionen:

- · Überwachung von Po, Pc, Sd und Überhitzung in der Saugleitung
- MT: Po max = -5 °C, Po min = -35 °C
- MT: Pc max = 110 bar
- MT: Sd max = 120 °C
- LT: Po max = -5 °C, Po min = -45 °C

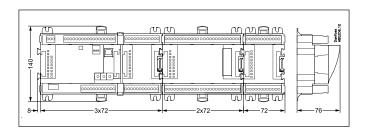
- LT: Pc max = 40 bar
- LT: Sd max = 100 °C
- SH min = 5 °C, SH max = 35 °C

Sonstiges:

- Start/Stopp der Wärmerückgewinnung an Tw
- Externer Hauptschalter wird verwendet Die Daten dieses Beispiels werden auf der nächsten Seite verwendet. Im Ergebnis sind die folgenden Module zu verwenden:
- AK-PC 782B Regler
- AK-XM 205A Eingangs- und Ausgangsmodul
- AK-XM 208C Schrittmotor-Ausgangsmodul
- AK-XM 103B analoges Eingangsund Ausgangsmodul
- AK-OB 110 analoges Ausgangsmodul

4. Planungsschema Mit Hilfe des Schemas lässt sich ermitteln, ob im Basisregler genügend Ein- und Ausgänge vorhanden sind. Reicht die Anzahl nicht aus, ist der Regler mit einem oder mehreren der angeführten Erweiterungsmodule zu erweitern. Notieren Sie sich, wie viele Anschlüsse benötigt werden, und zählen Sie diese zusammen.	Analoges Eingangssignal	Beispiel	Ein-/Aus-Spannungssignal	Beispiel	Ein-/Aus-Spannungssignal	Beispiel	EIN-/AUS-Ausgangssignal	Beispiel	Anal. Ausgangssignal 0–10 V	Schrittmotor Ausgang	Beispiel	Begrenzungen L
Analogeingänge												
Temperaturfühler, Ss, Sd, Sc3, S7, Stw, Shr, Sgc		13										
Zusätzliche Temperaturfühler / separate Thermostate/PI-Regelung Druckmessumformer, P0, Pc, Pctrl. Prec / separate Druckschalter		5										P = Max. 5 /Modul
Spannungssignal von anderer Regelung, separate Signale												
Wärmerückgewinnung über Thermostat												
Ein-/Aus-Eingänge	Kon	ıtakt	2/	1 V	23	0 V						
Sicherheitskreis, gemeinsam für alle Verdichter	KUII	2		+ v	23	O V						May 1/Caugggunas
Sicherheitskreis, Öldruck			_									Max. 1/Sauggruppe Max. 1/Verdichter
												wax. 1/ vertiler
Sicherheitskreis, Verdichter Motortomperatur												
Sicherheitskreis, Verdichter Motortemperatur												
Sicherheitskreis, Verdichter Hochdruckthermostat												
Sicherheitskreis, Verdichter Hochdruckpressostat		_	-									
Sicherheitskreis, allgemein für jeden Verdichter		6	_									Max. 1/Lüfter
Sicherheitskreis, Verflüssigerlüfter, Frequenzumrichter												Max. I/Lutter
Sicherheitskreis, Strömungsschalter												
Externer Start/Stopp		1	-									
Nachtabsenkung des Saugdrucks			-									
Separate Alarmfunktionen über DI												_
Lastabwurf												Ò
Start der Wärmerückgewinnung		1										Î
Flüssigkeitsstand-Behälter/Saugspeicher, Ölstand		1										le .
Pulsdruck												Priji
Ein-/Aus-Ausgänge												Siso
Verdichter, Motoren								6				l ägü
Entlastungen												ird
Lüftermotoren, Umwälzpumpen								3				<u> </u>
Alarmrelais, In-Betrieb-Relais, Fluten erlaubt												ger
Inject ON												Max. 2
Separate Thermostat- und Druckschalterfunktionen und Spannungsmessungen								1				Max. 10+5+5
Wärmerückgewinnungsfunktion über Thermostat												Max. 1
Flüssigkeitseinspritzung in Saugleitung/Wärmetauscher Heißgasentladung								1				Max. 1
Magnetventil für Öl, Ejektorventil.												piel e d
Dreiwegeventil								1				Wax. 1 Beispiel: Wax. 1 Wax. 1
Analoges Regelsignal, 0–10 V												
Frequenzumrichter, Verdichter, Lüfter, Pumpen, Ventile usw.											5	
Ventile mit Schrittmotor. Ggf. Parallelventile											3	
Summe der Anschlüsse zur Regelung		30		0		0		12			5+3	Summe = max. 220
Anzahl der Anschlüsse an einem Reglermodul	11	11	0	0	0	0	8	8	0	0	0	- 111ax. 220
5. Evtl. fehlende Anschlüsse		19	Ť	Ť.	<u> </u>	0		4	<u> </u>		5+3	
6. Die fehlenden Anschlüsse müssen durch eines oder mehrere I	Erve		LIDGO	mod	اماناها		itaa		- 14/05	don		Summo dor Loistune
AK-XM 101A (8 analoge Eingänge)	LI WE	iter	ungs	11100	uie	nere	riges	celli	wer	uen	,	Summe der Leistung Stck. je 2 VA =
AK-XM 101A (8 digitale Niederspannungseingänge)												Stck. je 2 VA =
AK-XM 102A (6 digitale Nederspannungsausgänge)												Stck. je 2 VA =
AK-XM 103A (4 analoge Eingänge, 4 analoge Ausgänge)		1									1	Stck. je 2 VA =
AK-XM 204A / B (8 Relaisausgänge)												Stck. je 5 VA =
		1						1				Stck. je 5 VA =
AK-XM 205A / B (8 analoge Fingange + 8 Relaisausgange)		1									1	Stck. je 5 VA =
AK-XM 205A / B (8 analoge Eingänge + 8 Relaisausgänge) AK-XM 208C (8 analoge Eingänge + 4 Schrittmotorausgänge)												
AK-XM 208C (8 analoge Eingänge + 4 Schrittmotorausgänge)												-
		'									1	Stck. je 0 VA = 0
AK-XM 208C (8 analoge Eingänge + 4 Schrittmotorausgänge)												-

8. Länge


Werden viele Erweiterungsmodule verwendet, wird der Regler entsprechend länger. Die Modulreihe wird zu einer untrennbaren Einheit verbunden.

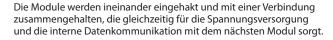
Wenn die Reihe länger als erwünscht wird, kann sie mithilfe des AK-CM 102 getrennt werden.

Das Modulmaß ist 72 mm. Module der Baureihe 100 bestehen aus einem Modul. Module der Baureihe 200 bestehen aus zwei Modulen. Der Regler besteht aus drei Modulen. Länge einer verbundenen Einheit = n×72 + 8

oder anders ausgedrückt:

Тур	Anzah	nl 💮	je	Länge
	1	Х	224	= 224 mm
Baureihe 200	_	Х	144	= mm
Baureihe 100	_	Х	72	= mm
				= mm
	Baureihe 200	1 Baureihe 200	1 x Baureihe 200 _ x	1 x 224 Baureihe 200 _ x 144

Beispiel fortgesetzt:

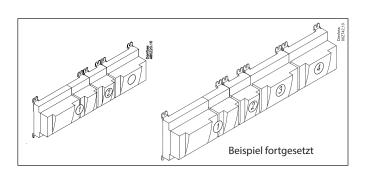

Reglermodul + 2 Erweiterungsmodule der Baureihe 200 + 1

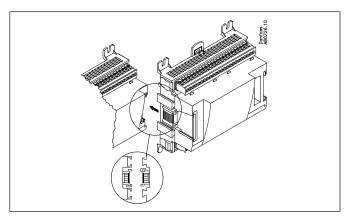
Erweiterungsmodul der Baureihe 100 = 224 + 144 + 144 + 72 = 584 mm.

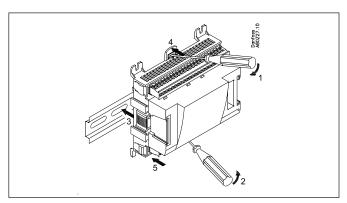
9. Verkoppeln der Module

Es muss mit dem Reglermodul begonnen werden. Anschließend sind die ausgewählten Erweiterungsmodule zu montieren. Die Reihenfolge ist beliebig.

Allerdings ist zu beachten, dass die Reihenfolge **nicht** mehr geändert werden darf, d. h. Module vertauscht werden dürfen, nachdem die Konfiguration erfolgt ist und der Regler programmiert wurde, wobei festgelegt wurde, welche Anschlüsse sich auf welchen Modulen und an welchen Klemmen befinden.




 $\label{thm:continuous} \mbox{Montage und Demontage sind immer in spannungslosem Zustand} \mbox{ vorzunehmen.}$

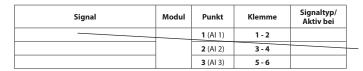

Die am Stecker des Reglers montierte Abdeckhaube ist auf den letzten freien Stecker zu versetzen, um den Stecker gegen Kurzschluss und Schmutz zu schützen.

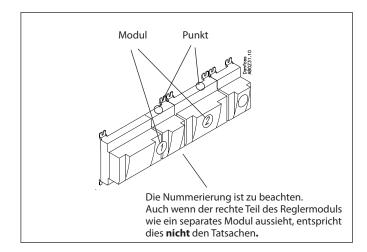
Nach dem Start der Regelung kontrolliert der Regler konstant, ob eine Verbindung zu den angeschlossenen Modulen besteht. Dieser Zustand lässt sich mittels einer Leuchtdiode beobachten.

Sind die beiden Schnappschlösser zur DIN-Schienenmontage offen, lässt sich das Modul auf der DIN-Schiene auf seinen Platz schieben – unabhängig davon, wo in der Reihe sich das Modul befindet. Die Demontage erfolgt ebenso, mit beiden Schnappschlössern in offener Stellung.

10. Anschlussstellen bestimmen

Alle Anschlüsse sind mit einer Anschlussstelle (Modul und Punkt) zu programmieren, sodass es im Prinzip zweitrangig ist, wo genau der Anschluss erfolgt, solange der korrekte Anschlusstyp (EIN oder AUS) gewählt wird.


- Der Regler ist das erste Modul, das nächste ist Nummer 2, usw.
- Ein Punkt sind die zwei oder drei Klemmen, die zu einem Ein- oder Ausgang gehören (z. B. zwei Klemmen für einen Fühler und drei Klemmen für ein Relais).


Die Vorbereitung des Anschlussdiagramms und die nachfolgende Programmierung (Konfiguration) sollten zu diesem Zeitpunkt erfolgen. Am einfachsten ist es, die Anschlussübersicht für die aktuellen Module auszufüllen.

Prinzip:

Name	Auf Modul	An Punkt	Funktion
z. B. Verdichter 1	X	X	Schließen
z.B. Verdichter 2	X	X	Schließen
z.B. Alarmrelais	X	X	NC
z.B. Hauptschalter	X	X	Schließen
z. B. P0	X	X	AKS 2050 -1 bis
150 har			

Die Anschlussübersicht des Reglers und eventueller Erweiterungsmodule wurden aus dem Abschnitt "Modulübersicht" übernommen. Beispiel: Reglermodul:

Hinweis: Die Sicherheitsrelais sollten nicht an ein Modul mit Übersteuerungsumschaltern angeschlossen werden, da sie durch eine falsche Einstellung außer Betrieb gesetzt werden können.

- die Spalten 1, 2, 3 und 5 werden bei der Programmierung benutzt.
- die Spalten 2 und 4 werden für das Anschlussdiagramm benutzt.

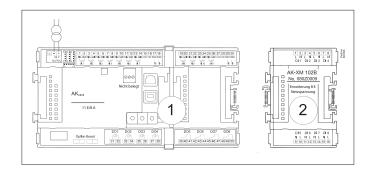
Beispiel fortgesetzt

Signal	Modul	Punkt	Klemme	Signaltyp/ Aktiv bei
Druckgastemperatur – Sd-MT		1 (Al 1)	1 – 2	Pt 1000
Sauggastemperatur – Ss-MT		2 (Al 2)	3 – 4	Pt 1000
Druckgastemperatur – Sd-IT	1	3 (Al 3)	5 - 6	Pt 1000
Sauggastemperatur – Ss-MT	1	4 (Al 4)	7 – 8	Pt 1000
Thermostatfühler im Maschinenraum – Saux1		5 (Al 5)	9 – 10	Pt 1000
Saugdruck – P0-MT]	6 (Al 6)	11 – 12	AKS 2050-59
Verflüssigungsdruck – Pc-MT]	7 (Al 7)	13 – 14	AKS 2050-159
Leitungswassertemperatur – Stw8	1	8 (Al 8)	19 – 20	Pt 1000
Temp. Gaskühlerausgang Sgc	1	9 (Al 9)	21 – 22	Pt 1000
Gaskühlerdruck Pgc	1	10 (Al 10)	23 – 24	AKS 2050-159
Kältemittelsammler, Prec CO ₂	1	11 (Al 11)	25 – 26	AKS 2050-159
Heißgasentladung		12 (DO 1)	31 – 32	EIN
Umwälzpumpe tw		13 (DO 2)	33 – 34	EIN
]	14 (DO 3)	35 – 36	
		15 (DO 4)	37 – 38	
MT Verdichter 1 (VLT Start)		16 (DO 5)	39 – 40 – 41	EIN
MT Verdichter 2	1	17 (DO6)	42 – 43 – 44	EIN
MT Verdichter 3]	18 (DO7)	45 – 46 – 47	EIN
IT Verdichter (VLT Start)]	19 (DO8)	48 – 49 – 50	EIN
Drehzahlregelung MT-Verdichter		24	-	0 – 10 V
Drehzahlregelung IT-Verdichter		25	-	0 – 10 V

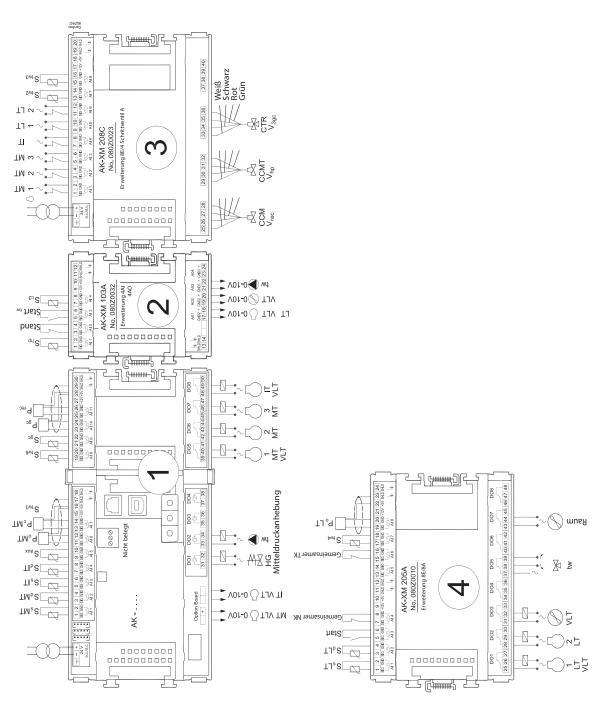
Signal	Modul	Punkt	Klemme	Signaltyp/ Aktiv bei
Temp. Gas-Bypass Shp		1 (Al 1)	1 – 2	Pt 1000
Niveauschalter, CO ₂ -Behälter		2 (Al 2)	3 – 4	Offen
Start/Stopp Wärmerückgewinnung Tw		3 (Al 3)	5 – 6	Geschlossen
Außentemperatur, Sc3	2	4 (Al 4)	7 – 8	Pt 1000
Drehzahlregelung LT-Verdichter	2	5 (AO 1)	9 – 10	0 – 10 V
Drehzahlregelung, Gaskühlerlüfter		6 (AO 2)	11 – 12	0 – 10 V
Drehzahlregelung, Pumpe – tw		7 (AO 3)	13 – 14	0 – 10 V
		8 (AO 4)	15 – 16	

Signal	Modul	Punkt	Klemme	Signaltyp/ Aktiv bei
MT-Verdichter 1 Sicherheitskreis		1 (Al 1)	1 – 2	Offen
MT-Verdichter 2 Sicherheitskreis		2 (Al 2)	3 – 4	Offen
MT-Verdichter 3 Sicherheitskreis		3 (AI 3)	5 – 6	Offen
]	4 (Al 4)	7 – 8	
LT-Verdichter 1 Sicherheitskreis]	5 (Al 5)	9 – 10	Offen
LT-Verdichter 2 Sicherheitskreis	3	6 (Al 6)	11 – 12	Offen
Wärmerückgewinnung tw2]	7 (Al 7)	13 – 14	Pt 1000
Wärmerückgewinnung tw3		8 (AI 8)	15 – 16	Pt 1000
Signal an Bypassventil, Vrec		9 (Step 1)	25 - 26 - 27 - 28	CCMT
Signal an Hochdruckventil, Vhp		10 (Step 2)	29 - 30 - 31 - 32	CCMT
Signal an Dreiwegeventil V3gc		11 (Step 3)	33 - 34 - 35 - 36	CTR
		12 (Step 4)	37 - 38 - 39 - 40	

Signal	Modul	Punkt	Klemme	Signaltyp/ Aktiv bei
Druckgastemperatur – Sd-LT		1 (Al 1)	1 – 2	Pt 1000
Sauggastemperatur – Ss-LT		2 (Al 2)	3 – 4	Pt 1000
Externer Hauptschalter		3 (Al 3)	5 – 6	Geschlossen
MT-Verdichter gem. Sicherheitskreis		4 (Al 4)	7 – 8	Offen
IT-Verdichter gem. Sicherheitskreis		5 (Al 5)	13 – 14	Offen
LT-Verdichter gem. Sicherheitskreis		6 (Al 6)	15 – 16	Offen
Wärmerückgewinnung tw4		7 (Al 7)	17 – 18	Pt 1000
Saugdruck – P0-LT		8 (Al 8)	19 – 20	AKS 2050-59
LT-Verdichter 1 (VLT Start)	4	9 (DO 1)	25 – 26 – 27	EIN
LT-Verdichter 2		10 (DO 2)	28 – 29 – 30	EIN
Lüftermotoren (VLT Start)		11 (DO 3)	31 – 32 – 33	EIN
		12 (DO 4)	34 – 35 – 36	
Dreiwegeventil, Leitungswasser, Vtw		13 (DO 5)	37 - 38 - 39	EIN
	1	14 (DO6)	40 – 41 – 42	
Raumventilator	1	15 (DO7)	43 – 44 – 45	EIN
	1	16 (DO8)	46 – 47 – 48	


11. Anschlussdiagramm

Die Zeichnungen der einzelnen Module können bei Danfoss angefordert werden. Format = dwg und dxf.


Sie können dann selbst die Modulnummer in den Kreis eintragen und die einzelnen Anschlüsse skizzieren.

Die Versorgungsspannung des Druckmessumformers muss aus dem Modul stammen, das das Drucksignal empfängt.

Die Abschirmung des Druckmessumformerkabels darf nur reglerseitig verbunden werden.

Beispiel fortgesetzt:

Benutzerhandbuch | Verbundregler, Typ AK-PC 782B

12. Spannungsversorgung

Die Spannungsversorgung ist nur an das Reglermodul anzuschließen. Die Versorgung der übrigen Module wird über die Stecker zwischen den Modulen übertragen.

Die Versorgungsspannung muss $24\,V$ +/- $20\,\%$ betragen. Pro Regler muss eine Stromversorgung eingesetzt werden. Die Stromversorgung muss Klasse II entsprechen.

Die 24-V-Versorgung darf **nicht** mit anderen Reglern oder Apparaten geteilt werden. Die analogen Eingänge und Ausgänge sind von der Versorgung **nicht** galvanisch getrennt.

Plus und Minus am 24-V-Eingang darf nicht geerdet werden.

Bei Einsatz von Schrittmotorventilen müssen diese über eine separate Spannungsquelle versorgt werden.

In CO $_2\text{-}\mbox{Werken}$ muss außerdem mittels USV die Spannung des Reglers und der Ventile gesichert werden.

Stromversorgungsgröße

Die Leistungsaufnahme steigt mit der Anzahl der verwendeten Module:

Modul	Тур	Anzahl	je	Leistung	
Regler		1	Х	8 =	8 VA
Erweiterungsmodul	Baureihe 200	_	Х	5 =	_VA
Erweiterungsmodul	Baureihe 100	_	Х	2 =	_VA
Gesamt					_ VA

Gemeinsamer Druckmessumformer

Wenn mehrere Regler von einem einzigen Druckmessumformer ein Signal empfangen, muss das Versorgungskabel der entsprechenden Regler verdrahtet sein, sodass es nicht möglich ist, einen Regler ohne die anderen Regler auszuschalten. (Wenn ein Regler ausgeschaltet wird, wird das Signal abgeschwächt. Alle anderen Regler empfangen dann ein Signal, das zu niedrig ist.)

Beispiel fortgesetzt:

⁺ Separate Versorgungsspannung für das Modul mit Schrittmotoren: 7.8+1.3+1.3+5.1=15.5 VA.

2.6 Bestellung

1. Regler

Тур	Funktion	Anwendung	Sprache	Code-Nr.	Beispiel fortge- setzt
AK-PC 782B	Regler für Leistungsregelung von NK-, TK- und PV- Verdichtern und -Verflüssigern. Mit Ölmanagement, Multi-Ejektor, Hochdruckregelung und integriertem LAN mit IP-Kommunikation.	Regelung transkritischer CO ₂ -Boostersysteme	Englisch, Deutsch, Französisch, Italienisch, Spanisch, Portugiesisch, Russisch, Chinesisch ¹⁾ , Niederländisch, Dänisch, Finnisch, Polnisch, Tschechisch	080Z0202	х

 $^{^{1)}}$ Chinesisch ist im MMI-Display nicht verfügbar. Es ist nur über das Service-Tool (ST-500) im PC verfügbar.

2. Erweiterungsmodule und Übersicht über Eingänge und Ausgänge

Тур	Analog- eingänge	Ein-/Ausgä	nge			Analoge Ausgänge	Schritt- motoraus- gänge	Modul mit Umschaltern	Bestell-Nr.	Beispiel fortge- setzt
	Für Fühler, Druckmess- umformer usw.	Relais (SPDT)	Solid State	Nieder- spannung (max. 80 V)	Hochspan- nung (max. 260 V)	0-10 V DC	Für Ventile mit Stufen- regelung	Zur Über- steuerung der Relais- ausgänge	Mit Schrauben- klemmen	
Regler	11	4	4	-	-	-		-	-	
Erweiterungsn	nodule				•					
AK-XM 101A	8								080Z0007	
AK-XM 102A				8					080Z0008	
AK-XM 102B					8				080Z0013	
AK-XM 103A	4					4			080Z0032	х
AK-XM 204A		8							080Z0011	
AK-XM 204B		8						х	080Z0018	
AK-XM 205A	8	8							080Z0010	х
AK-XM 205B	8	8						х	080Z0017	
AK-XM 208C	8						4		080Z0023	х
Folgendes Erw Es ist nur Platz	reiterungsmodu für ein Modul.	l kann auf die	Platine des Re	glermoduls p	latziert werde	n.				
AK-OB 110						2			080Z0251	х

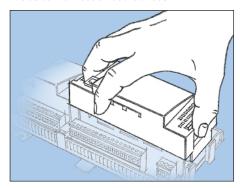
3. AK-Bedienung und Zubehör

Тур	Funktion	Anwendung	Bestell-Nr.	Beispiel fortge- setzt
Bedienung			·	
AK-ST 500	Software für die Bedienung von AK-Reglern	AK-Bedienung	080Z0161	х
-	Kabel zwischen PC und AK-Regler	USB A-B (Standard-IT-Kabel)	-	х
Zubehör	Stromversorgungsmodul 230 V / 115 V bis 24 V D	С		
AK-PS 075	18 VA		080Z0053	х
AK-PS 150	36 VA	Reglerversorgung	080Z0054	х
AK-PS 250	60 VA		080Z0055	
Zubehör	Externes Display kann an das Reglermodul anges	schlossen werden. Zur Anzeige von z. B. Saugdi	uck	
EKA 163B	Display		084B8574	
EKA 164B	Displayeinheit mit Bedientasten		084B8575	
MMIGRS2	Grafisches Display mit Bedientasten		080G0294	
	K I I I FKA DI I I I I I	Länge = 2 m	084B7298	
-	Kabel zwischen EKA Display und Regler	Länge = 6 m	084B7299	
	Kabel zwischen grafischem Display, Typ MMIGRS2,	Länge = 1,5 m	080G0075	
-	und Regler (Regler mit RJ11-Stecker)	Länge = 3 m	080G0076	
Zubehör	Kommunikationsmodule für Regler, wenn Modul	e nicht dauerhaft angeschlossen werden könn	en	
AK-CM 102	Kommunikationsmodul	Datenkommunikation für externe Erweiterungsmodule	080Z0064	

3. Mounting and wiring

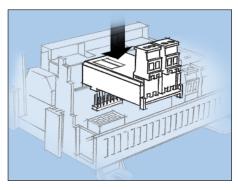
In diesem Abschnitt wird erläutert, wie der Regler...

- · eingebaut wird
- · angeschlossen wird

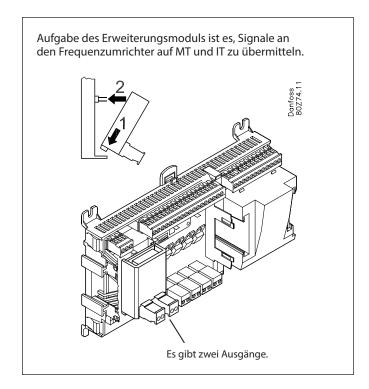

Dazu wird erneut das oben erläuterte Beispiel verwendet, das folgende Module umfasst:

- AK-PC 782B Reglermodul
- AK-XM 205A Eingangs- und Ausgangsmodul
- AK-XM 208C analoges Eingangsmodul + Schrittmotor-Ausgangsmodul
- AK-XM 103B analoges Eingangs- und Ausgangsmodul
- AK-OB 110 analoges Ausgangsmodul

3.1 Montage

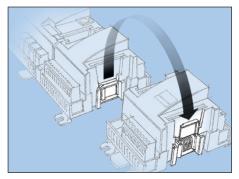

Montage des analogen AusgangsmodulsDas Basismodul darf nicht unter Spannung stehen.

1. Oberteil vom Basismodul abheben

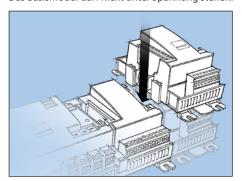


Die Platte seitlich links von den Leuchtdioden und die Platte seitlich rechts von den roten Adressenumschaltern nach innen drücken. Das Oberteil vom Basismodul abheben.

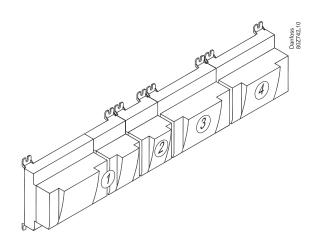
2. Erweiterungsmodul im Basismodul montieren

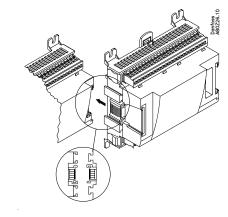


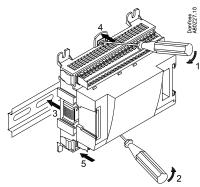
3. Oberteil wieder auf Basismodul aufsetzen


Montage des Erweiterungsmoduls am Basismodul

1. Die Schutzkappe vom Verbindungsstecker rechts am Basismodul entfernen.


Die Kappe vom Verbindungsstecker rechts auf das Erweiterungsmodul aufsetzen, das sich am weitesten rechts in der AK-Reihe befindet.


2. Das Erweiterungsmodul mit dem Basismodul zusammensetzen Das Basismodul darf nicht unter Spannung stehen.



Im vorliegenden Beispielfall sind drei Erweiterungsmodule an das Basismodul anzubauen. Zunächst soll das Modul mit den analogen Ausgängen direkt auf dem Basismodul angebracht werden. Danach sind die folgenden Module anzubauen. Die Reihenfolge ergibt sich aus der Abbildung.

Alle vorzunehmenden Einstellungen der drei Erweiterungsmodule richten sich nach dieser Reihenfolge.

Solange die beiden Schnappschlösser zur DIN-Schienenmontage offen sind, lässt sich das Modul auf der DIN-Schiene auf seinen Platz schieben – unabhängig davon, wo in der Reihe sich das Modul befindet.

Beim Ausbau müssen die Schnappschlösser ebenfalls geöffnet sein.

3.2 Verdrahtung

Bei der Planung wurde festgelegt, welche Funktionen angeschlossen werden sollen und wo diese zur Ausführung kommen.

1. Eingänge und Ausgänge anschließen

Hier eine Übersicht gemäß Beispielfall:

Signal	Modul	Punkt	Klemme	Signaltyp/ Aktiv bei
Druckgastemperatur – Sd-MT		1 (Al 1)	1 – 2	Pt 1000
Sauggastemperatur – Ss-MT		2 (Al 2)	3 – 4	Pt 1000
Druckgastemperatur – Sd-IT		3 (Al 3)	5 – 6	Pt 1000
Sauggastemperatur – Ss-MT		4 (Al 4)	7 – 8	Pt 1000
Thermostatfühler im Maschinenraum – Saux1		5 (Al 5)	9 – 10	Pt 1000
Saugdruck – P0-MT		6 (Al 6)	11 – 12	AKS 2050-59
Verflüssigungsdruck – Pc-MT]	7 (Al 7)	13 – 14	AKS 2050-159
Leitungswassertemperatur – Stw8]	8 (Al 8)	19 – 20	Pt 1000
Temp. Gaskühlerausgang Sgc		9 (Al 9)	21 – 22	Pt 1000
Gaskühlerdruck Pgc]	10 (Al 10)	23 – 24	AKS 2050-159
Kältemittelsammler, Prec CO₂	1	11 (Al 11)	25 – 26	AKS 2050-159
Heißgasentladung		12 (DO 1)	31 – 32	EIN
Umwälzpumpe tw		13 (DO 2)	33 – 34	EIN
		14 (DO 3)	35 – 36	
		15 (DO 4)	37 – 38	
MT Verdichter 1 (VLT Start)		16 (DO 5)	39 – 40 – 41	EIN
MT Verdichter 2		17 (DO6)	42 – 43 – 44	EIN
MT Verdichter 3]	18 (DO7)	45 – 46 – 47	EIN
IT Verdichter (VLT Start)]	19 (DO8)	48 – 49 – 50	EIN
Drehzahlregelung MT-Verdichter		24	-	0 – 10 V
Drehzahlregelung IT-Verdichter]	25	-	0 – 10 V

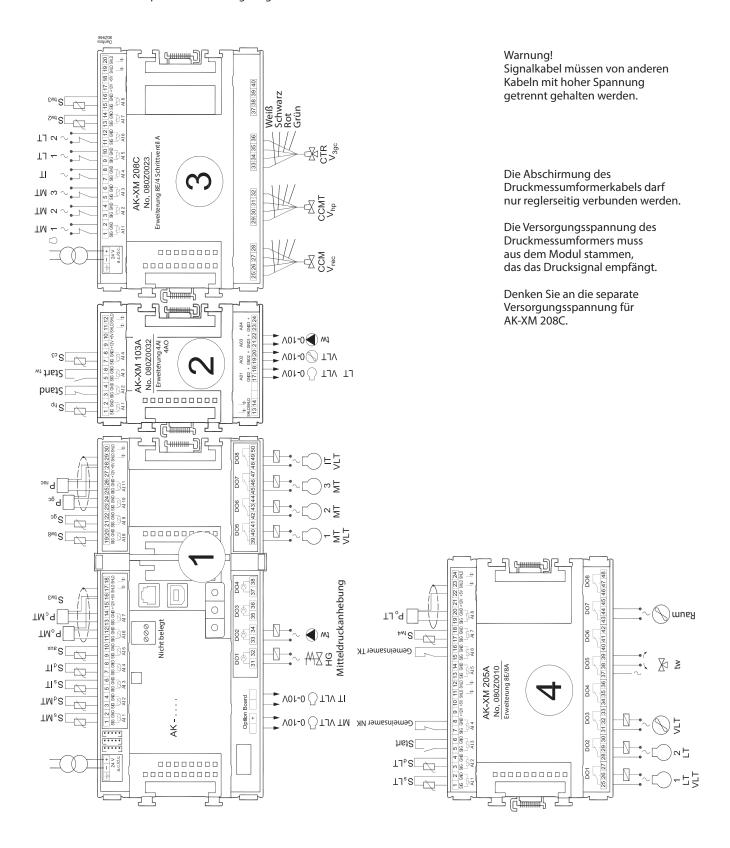
Signal	Modul	Punkt	Klemme	Signaltyp/ Aktiv bei
Temp. Gas-Bypass Shp		1 (Al 1)	1 – 2	Pt 1000
Niveauschalter, CO ₂ -Behälter]	2 (Al 2)	3 – 4	Offen
Start/Stopp Wärmerückgewinnung Tw		3 (Al 3)	5 - 6	Geschlossen
Außentemperatur, Sc3	2	4 (Al 4)	7 – 8	Pt 1000
Drehzahlregelung LT-Verdichter		5 (AO 1)	9 – 10	0 – 10 V
Drehzahlregelung, Gaskühlerlüfter		6 (AO 2)	11 – 12	0 – 10 V
Drehzahlregelung, Pumpe – tw		7 (AO 3)	13 – 14	0 – 10 V
		8 (AO 4)	15 – 16	

Signal	Modul	Punkt	Klemme	Signaltyp/ Aktiv bei
MT-Verdichter 1 Sicherheitskreis		1 (Al 1)	1 – 2	Offen
MT-Verdichter 2 Sicherheitskreis		2 (Al 2)	3 – 4	Offen
MT-Verdichter 3 Sicherheitskreis		3 (Al 3)	5 – 6	Offen
]	4 (Al 4)	7 – 8	Offen
LT-Verdichter 1 Sicherheitskreis]	5 (Al 5)	9 – 10	Offen
LT-Verdichter 2 Sicherheitskreis	3	6 (Al 6)	11 – 12	Offen
Wärmerückgewinnung tw2]	7 (Al 7)	13 – 14	Pt 1000
Wärmerückgewinnung tw3	1	8 (AI 8)	15 – 16	Pt 1000
Signal an Bypassventil, Vrec]	9 (Step 1)	25 - 26 - 27 - 28	CCMT
Signal an Hochdruckventil, Vhp]	10 (Step 2)	29 - 30 - 31 - 32	CCMT
Signal an Dreiwegeventil V3gc		11 (Step 3)	33 - 34 - 35 - 36	CTR
]	12 (Step 4)	37 - 38 - 39 - 40	

Wichtig: der Trennverstärker.

Wenn Signale aus verschiedenen Regelungen empfangen werden, z. B. aus der Wärmerückgewinnung für einen der Eingänge, muss ein galvanisch getrenntes Modul eingefügt werden.

Die Funktionen für die Schalter erscheinen in der letzten Spalte.


Druckmessumformer AKS 32R und AKS 2050 gibt es für mehrere Druckbereiche.

Im Beispiel gibt es zwei verschiedene Druckbereiche. Einer reicht bis 59 bar und zwei bis 159 bar.

Signal	Modul	Punkt	Klemme	Signaltyp/ Aktiv bei
Druckgastemperatur – Sd-LT		1 (Al 1)	1 – 2	Pt 1000
Sauggastemperatur – Ss-LT		2 (Al 2)	3 – 4	Pt 1000
Externer Hauptschalter		3 (Al 3)	5 – 6	Geschlossen
MT-Verdichter gem. Sicherheitskreis		4 (Al 4)	7 – 8	Offen
IT-Verdichter gem. Sicherheitskreis		5 (Al 5)	13 – 14	Offen
LT-Verdichter gem. Sicherheitskreis		6 (Al 6)	15 – 16	Offen
Wärmerückgewinnung tw4		7 (Al 7)	17 – 18	Pt 1000
Saugdruck – P0-LT	4	8 (Al 8)	19 – 20	AKS 2050-59
LT-Verdichter 1 (VLT Start)		9 (DO 1)	25 – 26 – 27	EIN
LT-Verdichter 2		10 (DO 2)	28 – 29 – 30	EIN
Lüftermotoren (VLT Start)		11 (DO 3)	31 – 32 – 33	EIN
		12 (DO 4)	34 – 35 – 36	
Dreiwegeventil, Leitungswasser, Vtw		13 (DO 5)	37 – 38 – 39	EIN
		14 (DO6)	40 - 41 - 42	
Raumventilator		15 (DO7)	43 – 44 – 45	EIN
		16 (DO8)	46 – 47 – 48	

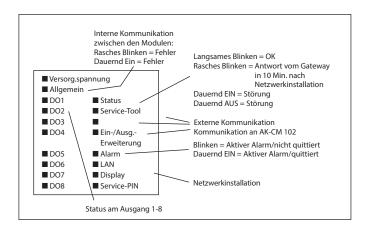
Die Anschlüsse des Beispiels werden hier gezeigt.

Benutzerhandbuch | Verbundregler, Typ AK-PC 782B

2. LAN-Kommunikationsnetzwerk anschließen

Bei der Einrichtung der Datenkommunikation sind die im Dokument RC8AC aufgeführten Anforderungen zu beachten.

3. Versorgungsspannung anschließen Die Versorgung von 24 V darf nicht mit anderen Reglern oder Apparaten geteilt werden. Die Klemmen dürfen nicht geerdet werden.


4. Leuchtdioden beachten

Nach Anschluss der Spannungsversorgung durchläuft der Regler eine interne Prüfung. Nach knapp einer Minute, wenn die Leuchtdiode "Status" langsam blinkt, ist der Regler bereit.

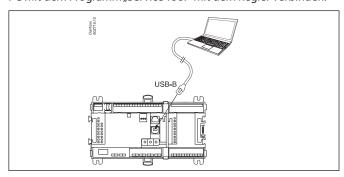
5. Bei Netzwerk

Adresse einstellen und Service-Pin aktivieren. Hinweis: Service-PIN wird für AK-SM 8xxA nicht verwendet.

6. Der Regler kann jetzt konfiguriert werden.

4. Configuration and operation

In diesem Abschnitt wird erläutert, wie der Regler...


- · konfiguriert wird.
- · bedient wird.

Dazu wird erneut das oben bereits erläuterte Beispiel mit MT-, LT-, IT-Regler, Hochdruckregler, Wärmerückgewinnung und Gaskühlung verwendet.

4.1 Konfiguration

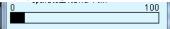
4.1.1 PC anschließen

PC mit dem Programm "Service Tool" mit dem Regler verbinden.

Der Regler muss vor Start des Service-Tool-Programms eingeschaltet werden und die Leuchtdiode "Status" muss blinken.

Service-Tool-Programm starten

Mit Benutzernamen SUPV anmelden


Wählen Sie den Benutzernamen **SUPV** aus und geben Sie das zugehörige Kennwort ein.

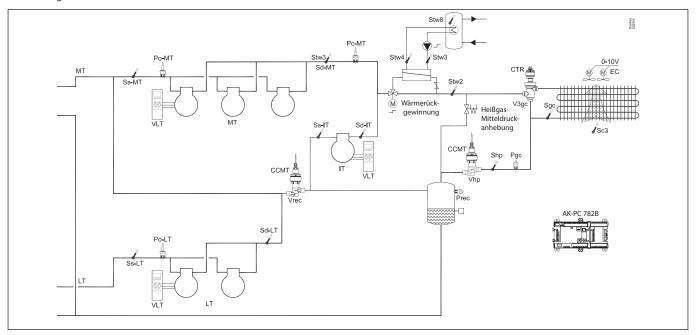
Hinweise zu Anschluss und Bedienung des Programms "AK Service-Tool" entnehmen Sie bitte der zugehörigen Anleitung.

Wird das Service-Tool erstmals mit einer neuen Reglerversion verbunden, dauert der Service-Tool-Programmstart etwas länger, da Daten vom Regler abgerufen werden. Der Fortschritt lässt sich über den Balken unten auf dem

Display verfolgen.

Bei Lieferung des Reglers lautet das Kennwort für den Benutzer "SUPV" 123.

Nach der Anmeldung beim Regler wird immer das Übersichtsbild des Reglers angezeigt.


Leeres Übersichtsbild: Dies liegt daran, dass der Regler noch nicht eingerichtet wurde.

Die rote Alarmglocke unten rechts zeigt an, dass vom Regler ein aktiver Alarm registriert wurde. Im vorliegenden Fall ist der Alarm darauf zurückzuführen, dass im Regler noch keine Zeiteinstellung vorgenommen wurde.

Benutzerhandbuch | Verbundregler, Typ AK-PC 782B

Beispiel einer Kälteanlage:

Die Systemkonfiguration soll anhand eines Beispiels erläutert werden, das aus einer MT-, LT- und IT-Gruppe besteht. Hierfür wird das gleiche Beispiel verwendet, das oben im Abschnitt "Design" erläutert wurde, mit einem Regler AK-PC 782B und Erweiterungsmodulen.

Verdichtergruppe

MT-Kreislauf

- Drei Verdichter im Zyklusbetrieb. Einer drehzahlgeregelt
- · Sicherheitsüberwachung der einzelnen Verdichter
- Gemeinsame Hochdrucküberwachung
- Po-Einstellung -10 °C, Po-Optimierung über Systemeinheit

LT-Kreislauf

- · Zwei Verdichter im Zyklusbetrieb. Einer drehzahlgeregelt
- Sicherheitsüberwachung der einzelnen Verdichter
- Gemeinsame Hochdrucküberwachung
- Po-Einstellung -30 °C, Po-Optimierung über Systemeinheit

IT-Kreislauf

- · Ein Verdichter, drehzahlgeregelt
- Sammler-Sollwert 36 bar

Hoch druck regelung:

- · Wärmerückgewinnung für Leitungswasser
- Gaskühler
- Lüfter, drehzahlgeregelt

Sammler:

- Optimaler CO₂-Sammlerdruck
- Überwachung CO₂-Niveau in Sammler
- Überwachung von Hoch- und Niederdruck
- Regelung der Temperatur im Leitungswassersammler, 55 °C

Lüfter im Maschinenraum

• Thermostatgeregelter Lüfter im Maschinenraum

Sicherheitsfunktionen:

- Überwachung von Po, Pc, Sd und Überhitzung in der Saugleitung
- MT: Po max = -5 °C, Po min = -35 °C
- MT: Pc max = 110 bar
- MT: Sd max = 120 °C
- LT: Po max = -5 °C, Po min = -45 °C
- LT: Pc max = 40 bar
- LT: Sd max = 100 °C
- SH min = 5 °C, SH max = 35 °C

Sonstiges:

- Start/Stopp der Wärmerückgewinnung an Tw
- Externer Hauptschalter wird verwendet

Es gibt auch einen internen Hauptschalter, der sich einstellen lässt. Sowohl der interne als auch der externe Hauptschalter müssen sich in der Position "EIN" befinden, bevor geregelt werden kann.

Warnung!

Der Hauptschalter stoppt alle Regelungen, einschließlich der Hochdruckregelung.

4.1.2 Autorisierung

 Konfigurationsmenü aufrufen
 Klicken Sie auf das orangefarbene Konfigurationsfeld
 mit dem Schraubenschlüssel ganz unten im Display.

3. Die Einstellungen des Benutzers "SUPV" ändern

4. Neuen Benutzernamen und Zugangscode (Kennwort) auswählen

5. Erneut anmelden und dabei die neuen Anmeldedaten verwenden

Regler werden mit einer voreingerichteten Standardautorisierung für verschiedene Benutzeroberflächen geliefert. Diese Einstellung muss geändert werden, um sie an die Anlage anzupassen. Die Änderungen können zu diesem Zeitpunkt oder später vorgenommen werden.

Über diese Schaltfläche können Sie stets wieder auf diese Anzeige zugreifen.

Hier links werden noch keine Funktionen angezeigt. Je weiter Sie mit der Konfiguration voranschreiten, um so mehr Funktionen werden hier aufgeführt.

Wählen Sie die Zeile **Zugang** aus, um zur Benutzerkonfigurationsanzeige zu gelangen.

Markieren Sie die Zeile mit dem Benutzernamen **SUPV.** Klicken Sie auf die Schaltfläche **Ändern.**

Hier können Sie die Aufsichtsperson für das jeweilige System und einen dazugehörigen Zugangscode auswählen.

Im Regler wird die Sprache verwendet, die im Service-Tool ausgewählt wurde. Dies gilt allerdings nur, wenn die betreffende Sprache im Regler vorhanden ist. Ist dies nicht der Fall, werden die Einstellungen und Messwerte auf Englisch angezeigt.

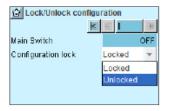
Zum Aktivieren der neuen Einstellungen muss eine erneute Anmeldung beim Regler vorgenommen werden, bei der die neuen Anmeldedaten (Benutzername und Zugangscode) verwendet werden.

Die Anmeldemaske kann durch Auswahl des Symbols in der oberen linken Displayecke aufgerufen werden.

4.1.3 Freigabe zur Konfiguration des Reglers

1. Konfigurationsmenü aufrufen

2. "Block/Freigeg. Konfiguration" auswählen



3. "Konfiguration blockiert" auswählen
Das blaue Feld mit der Bezeichnung **Blockiert** auswählen.

4. "Freigegeben" auswählen

Die Option Freigegeben auswählen.

Der Regler kann nur in freigegebenem Zustand konfiguriert werden.

Werte können in gesperrten Zustand geändert werden, allerdings gilt dies nur für Einstellungen, die nicht in Konflikt mit der Konfiguration stehen.

4.1.4 Systemeinstellung

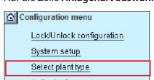
1. Konfigurationsmenü aufrufen

2. "Systemeinstellung" auswählen

3. Die Systemeinstellungen festlegen

Zum Ändern aller Einstellungen müssen Sie zunächst das entsprechende blaue Feld auswählen und dann den gewünschten Wert eingeben.

Im ersten Feld geben Sie eine Bezeichnung der Regelung ein, die Sie gerade einrichten. Der hier eingegebene Text erscheint zusammen mit der Regleradresse oben in allen Folgeanzeigen.


Die Zeiteinstellung kann vom PC übernommen werden. Ist der Regler an ein Netzwerk angeschlossen, werden Datum und Uhrzeit automatisch von der Systemeinheit im Netzwerk eingestellt. Dies gilt auch für die Zeitumstellung im Sommer und Winter. Die Uhr läuft auch bei einem Ausfall der Spannungsversorgung mindestens noch 12 Stunden lang.

4.1.5 Einstellung der Anlagenart

- 1. Konfigurationsmenü aufrufen
- 2. Anlagenart auswählen

Auf die Zeile Anlagenart auswählen klicken.

Die Kommentare zum den Seiten in der mittleren Spalte zu finden.

Allgemein:

Das verwendete Beispiel: Beispiel sind auf den folgen-

In unserem Beispiel soll der Regler eine Boosteranlage, die Hochdruckreaelung

und die IT-Verdichter

steuern.

Hier sind aufeinanderfolgende Optionen verfügbar, wobei sich die jeweils verfügbaren Optionen nur auf die aktuelle Auswahl beziehen.

Die Einstellungen für unser Beispiel werden im Display angezeigt.

Es gibt verschiedene untergeordnete Anzeigeseiten. Mit dem schwarzen Balken in diesem Feld wird angegeben, welche der Unterseiten derzeit angezeigt wird.

Mit den Tasten + und können Sie zwischen den Unterseiten wechseln.

Die Alarmübertragung zur Überwachungseinheit kann deaktiviert werden. Dies kann verwendet werden, um die Meldung "Alarm Router full" zu vermeiden, wenn der Regler von der Überwachungseinheit getrennt wird. Auf das Menü kann nur zugegriffen werden, wenn "Weitere Einstellungen" aktiviert ist (unter,,Anlagenart auswählen" vorhanden).

Um die Alarmübertragung wieder zu aktivieren, muss von der Überwachungseinheit aus ein erneuter Scan durchgeführt werden.

Hinweis: Die Alarmübertragung sollte nur mit großer Sorgfalt deaktiviert werden, da kritische Alarme nicht an die Überwachungseinheit übertragen werden. Dies kann zu Lebensmittelverderb oder anderen Schäden führen.

3 - Anlagentyp

Die Zahl bezieht sich auf die Zahl und Abbildung in der linken Spalte.

Anwendungsauswahl

notwendig sind, werden hier in der rechten Spalte alle möglichen Einstellungen aufgeführt.

Sie können unter vier Anwendungen auswählen, wobei gilt: HP = Hochdruckregelung. MT = mittlere Temperatur. LT = niedrige Temperatur. IT = Parallelverdichtung

3- Nach Anwendungsauswahl Kältemittel

Weitere Einzelheiten über verschiedene Einstellungsmöglichkeiten finden Sie in der rechten Spalte.

Da im Bild nur die Einstellungen und Anzeigen gezeigt werden, die für eine gegebene Konfiguration

Nur bei CO₂-Systemen. Das Kältemittel kann nicht gewechselt werden.

Verflüssigerlüfterregelung

Hier wird die Lüfterregelung festgelegt:

Stufe, Stufe + Drehzahl, nur Drehzahl oder Drehzahl für ersten Lüfter + Stufe für den Rest

Anzahl der Verflüssigerlüfter

Legen Sie hier die Anzahl der verwendeten Relaisausgänge fest.

Wärmerückgewinnung

Wärmerückgewinnung aktiviert.

Trinkwasser, Raumbeheizung oder beides.

Wird später eingestellt.

Ölmanagement

Ölstandkontrolle aktiviert.

Zur Auswahl stehen die folgenden Optionen:

Fixed pressure Difference pressure Timer based

Schnellkonfiguration auswählen

Hier können Sie alle Reglereinstellungen auf die Werkseinstellungen zurücksetzen.

4 - Definitionen zusätzlicher Systeme Verdichter-Kombinationen

Zur Auswahl stehen die folgenden Optionen:

Anzahl Verdichter

Stellen Sie die Anzahl der Verdichtereinheiten ein, die verwendet werden sollen.

Externer Hauptschalter

Zum Starten und Stoppen der Regelung kann ein Schalter angeschlossen werden. (Ermöglicht auch die USV-Auswahl.)

Überwa. Ext. Spannungsverlust (Signal von USV)

Überwachung der externen Spannung. Bei Auswahl von "Ja" wird ein Digitaleingang zugeordnet.

Alarmausgang

Hier kann eingestellt werden, ob es sich um ein Alarmrelais handeln soll oder nicht und durch welche Prioritäten es aktiviert wird.

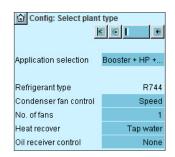
In-Betrieb-Relais

Ein Relais, das "freigibt", wenn die Regelung gestoppt wird.

Nachtbetrieb via DI

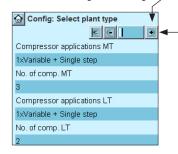
Die Umschaltung auf den Nachtbetrieb erfolgt, sobald das Signal empfangen wird.

Weitere Einstellungen


Über diese Funktion kann der Zugriff auf weitere Einstellungen in den verschiedenen Menüs ermöglicht werden.

Comp. cap. out to AO

Bei Auswahl von "Ja" wird die Laufleistung eines analogen Ausgangs angegeben.



4. Zusätzliche Anlageneinstellungen

5. Alarmrouter deaktivieren

4.1.6 Einstellung der Steuerung des NK-Verbunds

1. Konfigurationsmenü aufrufen

2. "NK Verbund" auswählen

3. Sollwerte festlegen

 \rightarrow

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

4. Werte für die Leistungsregelung festlegen

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

The configuration menu in the Service Tool has changed now. It shows the possible settings for the selected plant type.

In our example we select the settings:

- P0 optimization
- Suction set point =
- -10 °C

The settings are shown here in the display.

If a "Variable" or "screw compressor" is chosen in the first line, its type must be determined in the next line.

In our example we select:

- -VSD + single step
- 3 compressors
- Cyclic

Note: The two parameters 'Control sensor' and 'Psuc max offset' are used to configure an application with Low Pressure Multi Ejectors. They are only visible when no IT suction group has been defined".

3 - Sollwertmodus

Verschiebung des Saugdrucks in Abhängigkeit von externen Signalen. 0: Sollwert = Sollwertvorgabe + Nachtverschiebung + Offset von externem 0 – 10-V-Signal

1: Sollwert = Sollwertvorgabe + Offset von P0-Optimierung

Sollwert (-80 bis 30 °C)

Einstellung des gewünschten Saugdrucks in °C

Offset via Ext. Ref.

Auswählen, ob ein externes Übersteuerungssignal des 0 – 10-V-Sollwerts erforderlich ist.

Offset bei max Signal (-100 bis 100 °C) Verschiebungswert bei max. Signal (10 V) **Offset bei min Signal** (-100 bis 100 °C)

Verschiebungswert bei min. Signal (0 V)

Offset Filter (10 bis 1800 s)

Hier einstellen, wie schnell eine Sollwertänderung wirksam werden darf.

Nachtverschiebung via DI

Wählen, ob für die Aktivierung des Nachtbetriebs ein digitaler Eingang notwendig ist. Der Nachtbetrieb kann auch über den internen Wochenzeitplan oder ein Netzwerksignal gesteuert werden.

Nachtverschiebung (-25 bis 25 K)

Verschiebung des Saugdrucks bei aktivem Nachtabsenkungssignal (in Kelvin) einstellen.

Max Sollwert (-50 bis 80 °C)

Max. zulässiger Saugdrucksollwert

Min Sollwert (-80 bis 25 °C)

Min. zulässiger Saugdrucksollwert

4 - Verdichteranwendungen

Hier eine der verfügbaren Verdichterkonfigurationen auswählen:

Art Führungsverdichter

Variable

Für die Variable gibt es folgende Optionen:

Speed
Digital Scroll
Stream4
Stream6
CRii4
CRii6

Anzahl Verdichter

Anzahl der Verdichter (insgesamt) einstellen.

Entlastungen

Anzahl der Entlastungsventile

Ext. Verdichterstopp

Ein externer Schalter kann angeschlossen werden, mit dem die Verdichterregelung gestartet und gestoppt werden kann.

Regelfühler

Den Fühler für die Verdichterregelung auswählen:

- "Po-MT": regelt am Po-MT-Fühler
- "Po-MT + Psuc-MT": regelt sowohl "Po-MT" als auch "Psuc-MT".
 Die Verdichter werden am Fühler gesteuert, der die höchste Sollwertüberschreitung meldet.

Psuc Max. Offset

Hier die Differenz zwischen den Psuc-MT- und Po-MT-Sollwerten eingeben **Stufenregelmodus**

Das Schaltungsmuster der Verdichter auswählen:

Zyklisch: Aus gleich der Laufzeit der einzelnen Verdichter (FIFO) Best-Fit: Bestmögliche Leistungsanpassung mit möglichst wenigen Leistungssprüngen

Benutzerhandbuch | Verbundregler, Typ AK-PC 782B

Externe Koordination NK/TK

Bei Koordinierung mit einem externen TK-Regler "Ja" auswählen.

Ext. Koordination NK/TK

Sichtbar, wenn der Regler als "One Pack + HP" konfiguriert ist ("plant type" \rightarrow "application selection").

Die NK/TK-Koordination ist für Booster-Verbundtypen automatisch aktiviert. Für "One Pack"-Anwendungen kann der Betrieb über DI/DO aktiviert werden.

Grenzwert NK/TK-Koord.

Wählen Sie, wenn der NK-Verdichter gestartet werden soll:

- "Neutral zone" um zu starten, wenn Ps in oder über der Neutralzone lieat.
- "Reference", um zu starten, wenn Ps über dem Sollwert liegt.
- "Plus zone", um zu starten, wenn Ps in der Pluszone liegt.

TK-Koord. Stopp

Wählen Sie, wenn die TK-Verdichter gestoppt werden sollen:

- "NK Verdi." um zu stoppen, wenn NK nicht bereit ist.
- "NK Ps" um zu stoppen, wenn NK starten soll, aber nicht bereit ist.

Pump down

Auswählen, ob eine Pump-down-Schaltung am letzten Verdichter erforderlich ist.

Synchronierte Drehzahlen

Nein: Es stehen zwei analoge Ausgänge zur Verfügung.

Ja: Es steht ein analoger Ausgang zur Verfügung.

Früherer Stopp ermöglichen

Diese Option auswählen, um die zulässige Laufzeit des letzten Verdichters in der Minuszone zu begrenzen.

Früherer Stopp Verzög.

Maximal zulässige Laufzeit des letzten Verdichters in der Minuszone festlegen.

Pump down Grenze Po (-80 bis +30 °C)

Den aktuellen Pump-down-Grenzwert festlegen.

VSD Min. Drehzahl (0,5-60 Hz)

Mindestdrehzahl, bei der der Verdichter abschalten soll.

VSD Startdrehzahl (20-60 Hz)

Minimale Drehzahl für den Start des drehzahlgeregelten Antriebs (muss höher sein als der Wert unter "VSD Min. Drehzahl")

VSD Max. Drehzahl (40-120 Hz)

Höchste zulässige Drehzahl des Verdichtermotors

VSD Sicherheitsüberwachung

Auswählen, wenn ein Eingang für die Frequenzumrichterüberwachung erforderlich ist.

PBM Periodenzeit

Zeitdauer für das Bypassventil (EIN-Zeit + AUS-Zeit)

PBM Min. Leistung

Mindestleistung innerhalb der Zeitdauer (ohne Angabe einer Mindestleistung wird der Verdichter nicht gekühlt)

PBM Startleistung

Mindestleistung, bei der der Verdichter startet (muss auf einen höheren Wert eingestellt werden als "PBM Min. Leistung").

Lastabwurfgrenze

Das Signal wählen, das für die Lastbegrenzung benutzt werden soll (nur über Netzwerk, einen DI + Netzwerk oder zwei DI + Netzwerk)

Lastbegrenzung Periode

Die maximal zulässige Zeit für die Lastbegrenzung einstellen.

Lastabwurfgrenze 1

Maximal zulässige Leistungsgrenze für Lastabwurf an Eingang 1 einstellen.

Lastabwurfgrenze 2

Maximal zulässige Leistungsgrenze für Lastabwurf an Eingang 2 einstellen.

Übersteuerungsgrenze Ts

Unter dem Grenzwert ist jede Last uneingeschränkt zulässig. Bei Überschreiten von Ts startet ein Verzögerungsintervall. Nach Ablauf der Verzögerung wird die Lastbegrenzung aufgehoben.

Übersteuerungsverzögerung 1

Max. Dauer der Lastabwurfbegrenzung, wenn Ps zu hoch ist.

Übersteuerungsverzögerung 2

Max. Dauer der Lastabwurfbegrenzung, wenn Ps zu hoch ist.

Einfache PI Auswahl

Gruppeneinstellung für vier Regelungsparameter: Kp, Tn, + beschleunigt und – beschleunigt. Bei der Einstellung "Benutzerdefiniert" können die vier Regelungsparameter feinjustiert werden.

Kp Ps (0.1-10.0)

Verstärkungsfaktor der PI-Regelung

Tn Ps

Integrationszeit der PI-Regelung

+ Zone beschleunigt (A+)

Mit höheren Werten wird eine schnellere Regelung erzielt.

Zone beschleunigt (A⁻)

Mit höheren Werten wird eine schnellere Anpassung erzielt.

Weitere Einstellungen

Ps Filter

Schnelle Änderungen im To-Sollwert verringern.

Pc Filter

Schnelle Änderungen im Pc-Sollwert verringern.

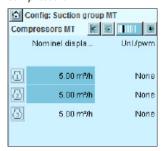
Laufzeit erste Stufe (15-300 s)

Zeit nach Anlauf, in der die Leistung auf die erste Stufe begrenzt ist.

Entlastungsmodus

Wählen, ob bei abnehmender Leistung ein oder zwei leistungsgeregelte Verdichter gleichzeitig entlastet werden dürfen.

AO Filter


Schnelle Änderungen am analogen Ausgang verringern.

AO max. Grenze

Spannung am analogen Ausgang begrenzen.


5. Set values for capacity of the compressors

 \ni

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

6. Set values for main step and any unloaders

)

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

7. Set values for safe operation

Config: Suction group MT					
Safety MT					
Emergency cap. day	50 %				
Emergency cap, night	25 %				
Sd max limit	120.0 °C				
Pc max. limit	100.00 bar				
To max. limit	0.0 °C				
Pc max. alarm delay	0 min.				
To min. limit	-40.0 °C				
To max. alarm	100.0 °C				
To max. delay	5 min.				
Safety restart time	5 min.				
9H min. alarm	0.0 K				
SH max. alarm	80.0 K				
SH alarm delay	5 min.				

 \ni

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

The compressor capacity is set in displaced volume per hour. m³/h.
See compressor data.

In our example there are no unloaders and hence no changes.

In our example we select:

- Safety limit for discharge temperature = 120°C
- Safety limit for high condensing pressure= 100 bar
- Safety limit for low suction pressure = -40°C
- Alarm limit for high suction pressure = -5°C
- Alarm limit for min. and max. superheat, respectively = 5 and 35 K.

5 – Verdichter

Hier wird die Leistungsverteilung der Verdichter definiert. Die Leistungseinstellungen hängen auch von den Auswahlen unter "Verdichteranwendungen" und "Stufenregelmodus" ab.

Nennleistung (1–1000 m³/h)

Hier die nominelle Leistung des betreffenden Verdichters einstellen. Bei drehzahlgeregelten Verdichtern muss die nominelle Leistung für die Netzfrequenz (50/60 Hz) eingestellt werden.

Leistungsstufen

Anzahl der Leistungsstufen jedes Verdichters (0-3).

6 - Leistungsverteilung

Diese Einstellung hängt von Verdichterkombination und Schaltprinzip ab. **Hauptstufe**

Die Nennleistung der Hauptstufe (Nennleistung des entsprechenden Verdichters in %) einstellen, 0–100 %.

Leistungsstufen

Anzeige der Leistung bei jeder Leistungsstufe, 0-100 %.

7 - Sicherheit

Notleistung – Tag

Gewünschte Zuschaltleistung bei Tagesbetrieb im Falle von Notbetrieb, der durch Fehler am Saugdruckfühler/Mediumtemperaturfühler ausgelöst wird.

Notleistung - Nacht

Gewünschte Zuschaltleistung bei Nachtbetrieb im Falle von Notbetrieb, der durch Fehler am Saugdruckfühler/Mediumtemperaturfühler ausgelöst wird.

Sd Max. Grenze

Maximaler Wert der Druckgastemperatur.

10 K unterhalb des Grenzwerts wird die Verdichterleistung verringert und die gesamte Verdichterleistung wird zugeschaltet.

Bei Überschreiten des Grenzwerts wird die gesamte Verdichterleistung abgeschaltet.

Pc Max. Grenze

Maximaler Wert des Verflüssigungsdrucks in bar.

3 K unterhalb des Grenzwerts wird die gesamte Verflüssigerleistung zugeschaltet und die Verdichterleistung wird verringert.

Bei Überschreiten des Grenzwerts wird die gesamte Verdichterleistung abgeschaltet.

Tc Max. Grenze

Grenzwert in °C. (Sofern bei der Verflüssigerkonfiguration ausgewählt wird, dass dieser Parameter angezeigt werden soll.)

Pc Max. Alarm Verzögerung

Zeitverzögerung für den Alarm Pc Max.

Ps Min. Grenze

Unterer Wert für Saugdruck in °C.

Bei Verringern des Grenzwerts wird die gesamte Verdichterleistung abgeschaltet.

Ps Max. Alarm

Alarmgrenze für hohen Saugdruck Ps.

Ps Max. Verzögerung

Verzögerungszeit vor Alarm zu hohem Saugdruck Ps.

Sicherheitszeitraum vor Neustart

Gemeinsame Verzögerungszeit vor Neustart der Verdichter. (Gilt für die Funktionen: "Sd Max. Grenze", "Pc Max. Grenze" und "PsMin. Grenze").

SH Min. Alarm

Alarmgrenzwert für min. Überhitzung in der Saugleitung.

SH Max. Alarm

Alarmgrenzwert für max. Überhitzung in der Saugleitung.

SH Alarmverzögerung

Verzögerungszeit vor Alarmauslösung bei min./max. Überhitzung in der Saugleitung.

8. Set monitoring of compressor

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

9. Set operation time for compressor

Config: Suction group MT Anti cycle timers MT					
Variable compressors					
Min OFF time	0 m in.				
Min ON time	0 min.				
Recycle time	5 min.				
Safety cutout delay	D m in.				
Safety restart delay	5 min.				
Step compressors					
Min OFF time	0 min.				
Min ON time	0 min.				
Recycle time	5 m in.				
Safety cutout delay	0 min.				
Safety restart delay	5 min.				

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

10. Set Misc. functions

Config: Suction group MT Misc. parameters MTK					
Ctrl. of Injection ON No					
Liq. inj. suction line No					

In our example we use:

- Common high-pressure pressure control for all compressors
- One general safety monitoring unit for each compressor

(The remaining options could have been selected if specific safety controls for each compressor had been required).

Set min. OFF-time for the compressor relay. Set min. ON-time for the compressor relay. Set how often the compressor is allowed to start.

The settings only apply to the relay that cuts the compressor motor in and out.

They do not apply to unloaders.

If the restrictions overlap, the controller will use the longest restriction time.

In our example we do not use these functions.

8 - Verdichtersicherheit

Gemeinsame Schutzfunktion

Es besteht die Möglichkeit, einen gemeinsamen Sicherheitseingang für alle Verdichter zu wählen. Bei Auslösen eines Alarms werden alle Verdichter abgeschaltet.

Öldrucksicherheit usw.

Hier wird festgelegt, ob ein solcher Schutz angeschlossen werden soll. Bei "Allgemein" kommt ein Signal von jedem Verdichter.

Sd Fühler/Verdichter

Auswählen, ob für jeden Verdichter eine Sd-Messung erfolgen soll.

Max. Druckgastemperatur

Ausschalttemperatur.

Sd Verd. Alarmverzögerung

Alarm-Verzögerungszeit.

Sd Verd. Sicherh.ausschalt.

Festlegen, ob die Sicherheitsabschaltung aktiviert werden soll.

9 - Minimale Betriebszeiten

Hier werden die Betriebszeiten eingestellt, sodass unnötiger Betrieb vermieden wird.

Die Wiedereinschaltzeit ist die Zeit zwischen zwei aufeinanderfolgenden Starts.

Sicherheitstimer

Sicher.verzögerung

Zeitverzögerung vom Ausfall der Sicherheitsautomatik bis zur Fehlermeldung vom Verdichter. Diese Einstellung gilt für alle Sicherheitseingänge des entsprechenden Verdichters.

Wiedereinschaltzeit

Mindestzeit, für deren Dauer ein Verdichter nach einer Sicherheitsabschaltung in Ordnung sein muss. Danach darf er erneut gestartet werden.

10 – Sonstige Parameter

Einspritzung Ein

DO: Diese Funktion wählen, wenn hierfür ein Relais reserviert werden soll. (Diese Funktion ist mit dem Regler mit Expansionsventil zu verdrahten, sodass die Flüssigkeitseinspritzung bei Sicherheitsabschaltung des letzten Verdichters geschlossen wird.)

Netzwerk: Das Signal wird über die Datenübertragung an den Regler gesendet.

Startverzögerung Verdichter

Verzögerungszeit vor Verdichterstart.

Einspr. Ausschalt.verz.

Verzögerungszeit für Einspritzung aus.

Einspritz. Saugltg.

Diese Funktion ist zu wählen, wenn eine Flüssigkeitseinspritzung in der Saugleitung erfolgen soll, um die Druckgastemperatur niedrig zu halten. Die Regelung kann entweder über ein Magnetventil und ein TEV oder über ein AKV-Ventil erfolgen.

AKV ÖG Saugltg.

Anzeige des Öffnungsgrads des Ventils in %.

Einspritzstart SH

Überhitzungswert, ab dem die Flüssigkeitseinspritzung beginnt.

Einspritzdiff. SH

Überhitzungsdifferenz für die Einspritzregelung.

Einspritzstart Sd Temp.Starttemperatur für die Flüssigkeitseinspritzung in die Saugleitung.

Einspritzdiff. Sd Temp.

Differenz bei Korrektur an Sd

SH Min. Sauggasüberh.

Mindestwert der Überhitzung in der Saugleitung.

SH Max. Sauggasüberh.

Höchstwert der Überhitzung in der Saugleitung.

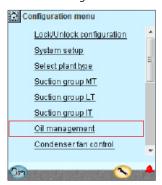
AKV Periodendauer

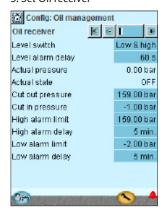
Periodendauer für AKV-Ventil.

Einspritzverzög. Start

Verzögerungszeit der Flüssigkeitseinspritzung beim Einschalten der Kühlstelle.

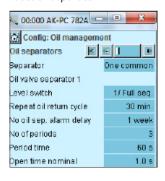
Anschließend kann mit der Einstellung der TK- und PV-Verbunde fortgefahren werden.


Im Prinzip werden hier jeweils die gleichen Einstellungen vorgenommen.


4.1.7 Ölmanagement

1. Go to Configuration menu

2. Set Oil management



3. Set Oil receiver

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

4. Set oil separator

In our example, oil management has not been included.

The settings are only displayed for information purposes and apply to the "Fixed pressure" control which is configured in the "Plant Type display".

In our example, we have two level switches in the receiver. Both one high and one low.

The process is as follows: When a signal is given from the level switch, the discharging process to the receiver commences. This pulsates three times with one minute intervals. Each pulse lasts one second. If the level switch does not register an oil drop at this point, an alarm is given when the delay time has expired.

Niveauschalter

Gewünschte Niveaufühler definieren:

Ma

Min und Max.

Niveaualarmverzög.

Verzögerungszeit für Niveaualarm

Aktueller Druck

Messwert

Aktueller Status

Status des Ölabscheiders

Ausschaltdruck

Sammlerdruck für die Ölabschaltung

Einschaltdruck

Sammlerdruck für die Öleinschaltung

Max. Alarmgrenze

Wenn ein höherer Druck registriert wird, wird ein Alarm ausgegeben

Max. Alarmverzögerung

Zeitverzögerung für den Alarm

Min. Alarmgrenze

Wenn ein niedrigerer Druck registriert wird, wird ein Alarm ausgegeben

Min. Alarmverzögerung

Zeitverzögerung für den Alarm

4

Abscheider

Festlegen, ob ein gemeinsamer Abscheider für alle Verdichter oder zwei separate Abscheider (MT und IT) vorliegen.

Niveauerkennung

Die gewünschte Option für die Abscheiderregelung festlegen: "Full Sequence", "To Level" oder "Hoch/Niedrig"-Füllstandschalter

Niveaualarmverzög.

Ein Alarm wird ausgegeben, wenn ein Füllstandschalter für niedrigen Füllstand verwendet wird.

Repeat Ölrücklaufkreis

Zeit bis zur Wiederholung eines Entleerungsvorgangs aus dem Abscheider, wenn der Füllstandschalter weiterhin einen hohen Füllstand angibt.

Kein Ölabscheider – Alarmverzögerung

Alarmverzögerung, wenn ein Signal für fehlende Ölabscheidung ausgegeben wird (Kontakt für hohen Füllstand ist nicht aktiviert)

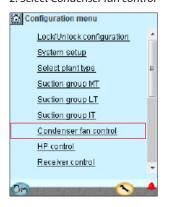
Periodenzahl

Anzahl der Öffnungsvorgänge eines Ventils in einer Entleerungssequenz

Periodendauer

Zeit zwischen den Ventilöffnungen

Öffnungszeit


Öffnungszeit des Ventils.

4.1.8 Einstellung der Regelung der Verflüssigerlüfter

1. Go to Configuration menu

2. Select Condenser fan control

3. Set control mode and reference

Wählen S

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

4. Set values for capacity regulation

Config: Condenser fan control					
Capacity control	€ I 9				
Condenser fan control	Speed				
No. of fans	2				
Fan safety	No				
Fan speed type	VSD				
VSD start speed	20.0 %				
VSD Min. speed	10.0 %				
VSD safety monitor.	No				
Fan control mode	PEcantrol				
Кр	10.0				
Tn	180 s				
Capacity limit at night	100.0 %				
V3gc valve	1 Stepper				

In our example, the condenser pressure is controlled on the basis of the Sgc and from Sc3 (floating reference). The settings shown here in the display.

In our example we use a number of fans that are all speed-controlled in parallel. The settings are shown here in the display.

For your information, the function "Monitor fan safety" will require an input signal from each fan.

3 - Fühler und Sollwert

Regelfühler

Sgc: Temperatur am Ausgang des Gaskühlers.

S7: Die Temperatur des Mediums wird zur Regelung verwendet.

Sollwertmodus

Wahl des Sollwerts für den Verflüssigungsdruck:

Feste Einstellung: Wird verwendet, wenn ein fester Sollwert = "Einstellung" aewünscht wird.

Variabel: Wird verwendet, wenn der Sollwert als Funktion von Sc3 Außentemperatursignal, Einstellwerte für "Auslegung tm K" / "Minimum tm K" und aktueller, zugeschalteter Verdichterleistung geändert wird. (Ein variabler Sollwert ist für CO₂ und Wärmerückgewinnung erforderlich.) **Sollwert**

Einstellung des gewünschten Verflüssigungsdrucks in Temperatur.

Min. tm

Min. Mitteltemperaturdifferenz zwischen Sc3 Luft- und Pc Verflüssigungstemperatur ohne Belastung.

Auslegung tm

Die Dimensionierungs-Mitteltemperaturdifferenz zwischen Sc3 Luft- und Pc Verflüssigungstemperatur bei max. Belastung (tm-Differenz bei max. Belastung, allgemein 2 bis 4 K).

Sgc max reference

Maximal zulässige Gaskühler-Ausgangstemperatur. Diese Funktion begrenzt den Sollwert für Sgc.

Tc anzeigen

Hier einstellen, ob Tc angezeigt werden soll.

Lüfterdrehzahl über DI zwangssteuern

Stellen Sie "Max. Drehzahl" oder "Prop%CMP" ein, um mittels eines externen DI die Lüfterdrehzahl zwangszusteuern (bei maximaler Drehzahl oder proportional zur Verdichterlast), V3gc zu schließen und der Pgc-Drucksollwert basierend auf dem Sgc-Fühler zu berechnen. Wenn DI nicht aktiviert ist, werden Lüfter und V3gc normal geregelt.

4 – Leistungsregelung

Leistungsregelungsmodus

Art der Regelung für Verflüssiger wählen:

Stufe: Die Lüfter werden stufenweise über Relaisausgänge geschaltet. Stufe/Drehzahl: Die Lüfterleistung wird mithilfe der Kombination aus Drehzahlregelung und Stufenschaltung geregelt.

Drehzahl: Die Lüfterleistung wird mithilfe der Drehzahlregelung (Frequenzumrichter) geregelt.

Drehzahl 1. Stufe: Erster Lüfter wird drehzahlgeregelt, für den Rest gilt Stufenschaltung.

Žwei Gruppen mit Drehzahlregelung: Die Leistung wird auf mehrere Gruppen aufgeteilt.

Anzahl der Verflüssigerlüfter

Anzahl der Lüfter einstellen.

(Wenn zwei Gruppen ausgewählt sind, entspricht diese Einstellung der Anzahl der Lüfter in Gruppe 1.)

Anzahl der Lüfter in Gruppe 2

Gruppe 2 muss mindestens so viele Lüfter wie Gruppe 1 enthalten.

Drehzahlbegrenzung für Gruppe 1

Die Drehzahl kann begrenzt werden, um die Geräuschentwicklung zu minimieren.

Lüftersicherh.

Sicherheitsüberwachung von Lüftern. Zur Überwachung jedes Lüfters wird ein Digitaleingang verwendet.

Lüfterdrehzahltyp

VSD (und normale AC-Motoren)

EC-Motor = DC-geregelte Lüftermotoren

VSD Startdrehzahl

Minimale Drehzahl für den Start der Drehzahlregelung (muss höher eingestellt sein als der Wert unter "VSD Min. Drehzahl")

VSD Min. Drehzahl

Mindestdrehzahl, bei der die Drehzahlregelung abgeschaltet wird (geringe Belastung).

VSD Sicherheitsüberwachung

Wahl der Sicherheitsüberwachung des Frequenzumrichters. Zur Überwachung des Frequenzumrichters wird ein Digitaleingang verwendet.

EC Startleistung

Die Regelung versorgt den EC-Motor erst dann mit Spannung, wenn diese Anforderung eintritt.

EC Spannung min.

Spannungswert bei 0 % Leistung(20 % = 2 V bei 0-10 V)

EC Spannung max.

Spannungswert bei 100 % Leistung (80 % = 8 V bei 0-10 V)

EC Spannung abs. max.

Zulässige Spannung für EC-Motor (Überkapazität)

Absolut Max Sgc

Höchstwert der Temperatur bei Sgc. Wird der Wert überschritten, wird die EC-Spannung auf den Wert der "EC Spannung abs. max." angehoben.

Regelungsmodus

Wahl der Regelungsstrategie.

P-Band: Die Lüfterleistung wird mithilfe der P-Bandregelung geregelt. Das P-Band ist "100/Kp".

PI-Regelung: Die Lüfterleistung wird mithilfe des PI-Reglers geregelt.

K

Verstärkungsfaktor Kp für P/PI-Regelung

Tn

Integrationszeit für PI-Regler

Leistungsgrenze nachts

Einstellung der max. Leistungsgrenze bei Nachtbetrieb. Dient zur Begrenzung der Lüfterdrehzahl in der Nacht, um den Lärmpegel gering zu halten.

V3gc

Zeigt an, ob am Gaskühler ein Gas-Bypassventil zum Einsatz kommt. EIN/AUS: Dreiwegeventil, Steuerung über Relais. Stufenventil: Modulierendes Dreiwegeventil vom Typ CTR Spannung: Dreiwegeventil, Steuerung z. B. über 0 – 10 V bei Ein/Aus:

Untere Bypassgrenze - Shp

Wenn der Fühler Sgc eine Temperatur erfasst, die niedriger ist als der ausgewählte Wert, wird das Gas außerhalb des Gaskühlers geleitet (z. B. bei Inbetriebnahme bei sehr niedriger Umgebungstemperatur).

Bypass zulässig nach

Mindestdauer, während der das Gas durch den Gaskühler geleitet werden muss, bevor ein Bypass zulässig ist. Bei Schrittmotor und Spannung:

Кр

Verstärkungsfaktor für PI-Regler

Tn

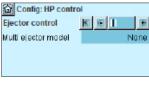
Integrationszeit für PI-Regler

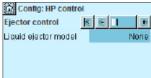
Min. Öffnungsgrad Max. Öffnungsgrad

4.1.9 Einstellung der Hochdruckregelung

1. Go to Configuration menu

2. Select HP control




3. Set regulation values

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

4. Set ejector function

The settings are shown here in the display

We do not use ejector control in our example.

3 – HD-Regelung

Vhp Ausgangstyp

Signaltyp zur Regelung des Hochdruckventils auswählen:

- Spannungssignal
- Schrittmotorsignal über AK-XM 208C
- 2 Schrittmotorsignale für Parallelventile

Zusatzleistung offset

Einstellen, um welchen Wert der Druck erhöht werden soll, wenn die Funktion "Zusatzleistung offset" aktiviert wird.

Pgc Min.

Zulässiger Mindestdruck in Gaskühler.

Pac Max.

Zulässiger Höchstdruck in Gaskühler.

Weitere Einstellungen

Vhp min. OD

Beschränkung des Ventilschließgrads.

Pgc max. Grenzw. P-Band

P-Band unter "Pgc Max.", wobei der Öffnungsgrad des Ventils erhöht wird.

dT Unterkühlung

Gewünschte Unterkühlungstemperatur

Кp

Verstärkungsfaktor

Tn

Integrationszeit

Pgc HR min.

Anzeigen des zulässigen Mindestdrucks im Hochdruckkreislauf während der Wärmerückgewinnung

Pgc HR max.

Auslesen des zulässigen Höchstdrucks im Hochdruckkreislauf während der Wärmerückgewinnung

Runterfahren bar/min.

Hier kann ausgewählt werden, wie schnell der Sollwert nach einer vollständigen Wärmerückgewinnung geändert werden muss.

Temp. bei 100 bar

Temperatur bei 100 bar. Hier kann die Regelungskurve beim transkritischen Betrieb festgelegt werden. Den erforderlichen Temperaturwert einstellen.

4 – Ejektorregelung

Hier die Leistung des Multi-Ejektors auswählen. Der Wert wird dann für jede Ventilkapazität angezeigt. Die Funktion wird auf Seite 114-117 beschrieben.

Auf dem nächsten Display wird die Kapazität angepasst, wenn sie mit Flüssigkeitsejektoren reguliert wird. Das nächste Display ist nicht sichtbar, wenn Flüssigkeitsejektoren im vorausgehenden Display konfiguriert wurden.

Warnung!

Wenn die Regelung während der Hochdruckregelung gestoppt wird, steigt der Druck.

Das System muss auf den höheren Druck ausgelegt sein; andernfalls kommt es zu einem Füllungsverlust.


4.1.10 Einstellen der Sammlerdruckregelung

1. Go to Configuration menu

2. Select Receiver control

3. Set parameters for receive reference

3. Sammlersollwert

Prec ref Modus

Eine der verfügbaren Sollwertoptionen für die PV-Verdichterregelung auswählen:

- "Fixed SP" für einen konstanten Sollwert,
- "Ext. Verschiebg" für einen konstanten Sollwert plus Verschiebung von einem analogen Eingang,
- · "PV Optimierg" für die automatische Berechnung des optimalen Sollwerts,
- "Delta P" für eine konstante Verschiebg über dem Sollwert des NK-Saugdrucks (unter Verwendung des Parameters Delta P Sollwert).

Prec set point / Prec reference

Auswahl des Einstellwerts oder Anzeige des aktuellen Sollwerts für den Sammlerdruck

Trec set point / Prec reference

Anzeige der gesättigten Temperatur für "Trec set point / Prec reference".

Prec max

Zulässiger Höchstdruck im Sammler. Bei Überschreiten dieses Grenzwerts wird ein Alarm ausgegeben.

Prec min

Zulässiger Mindestdruck im Sammler. Bei Überschreiten dieses Grenzwerts wird ein Alarm ausgegeben.

Delta P min aktivieren

Bei Aktivierung wird der Sammlersollwert berechnet, um die minimale Druckdifferenz mit dem NK-Saugdrucksollwert zu erreichen.

Delta P Sollwert

Die minimale Druckdifferenz zwischen dem aktuellen Sammlersollwert und dem NK-Saugdrucksollwert.

Trec in Übersicht anzeigen

Einstellung, ob Trec in der Übersichtsanzeige angezeigt werden soll.

Max.Ext.Verschiebg

Wenn für den Sollwertmodus die Option "Ext. Verschiebg" ausgewählt ist, hier den maximalen Offsetwert festlegen.

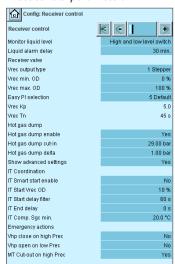
Prec min. Sollwert/Prec max. Sollwert

Wenn für den Sollwertmodus die Option "PV Optimierg" oder "Delta P" ausgewählt ist, sind zudem der Mindest- und Höchstwert des Sammlersollwerts einzustellen. Diese Option auswählen, um den variablen Bereich des Sammlerdrucks zu minimieren, der die Menge des in den Sammler eintretenden Gases angibt.

AK Support

Aktiviert Anforderungssignal (DI) und Freigabesignal (DO) für Klimabereich AC. Wenn AC freigegeben wird, erwartet der Regler, dass die AC-Last zur Sammlerlast beiträgt.

AC Prec min. Sollwert/Prec max. Sollwert


Zusätzliche Begrenzung des Druckbereichs des Sammlersollwerts, die nur gilt, wenn AC über DI angefordert wird. Diese Option wählen, um eine maximale und minimale AC-Temperatur zu gewährleisten.

Sammler Gas Anteil

Hält einen Mindestgasdruck im Sammler aufrecht. Der %-Wert gibt die minimal zulässige Dampfanteil am Sammlereinlass an.

4. Set control parameters

4. Sammlerregelung

Überwachg. Flüss.stand

Auswählen, wie der Flüssigkeitsstand überwacht werden soll:

- · "Min.Niveauschalter"
- "Max.Niveauschalter"
- "Max. und Min. Niveauschalter"

Flüss.Alarmverzög.

Zeitverzögerung für den Alarm

Sammlerventil

Folgende Einstellungen sind spezifisch für das/die Vrec-Sammlerventil(e):

Vrec Ausgangstyp

Vrec-Ausgangstyp für das Gasbypassventil auswählen:

- "1 Schrittmotor" für ein einzelnes Schrittmotorsignal über AK-XM 208C
- "2 Schrittmotor (synchron)" für zwei gleichzeitig geschaltete Schrittmotoren
- "2 Schrittmotor (sequenziell)" für zwei nacheinander geschaltete Schrittmotoren
- "Spannung (AO)" für ein Spannungssignal

Vrec min. Öff.grad

Begrenzung des Schließgrads des Vrec-Ventils.

Vrec max. Öff.grad

Begrenzung des Öffnungsgrads des Vrec-Ventils.

Einfache PI Auswahl

Gruppeneinstellung für Regelungsparameter: Kp, Tn. Bei der Einstellung "Benutzerdefiniert" können die Regelungsparameter feinjustiert werden:

Vrec Kp

Verstärkungsfaktor zur PI-Regelung

Vrec Tn

Integrationszeit zur PI-Regelung

HG-Mitteldruckanh. aktivieren

Auswählen, ob Heißgas zugeführt werden soll, wenn der Sammlerdruck zu stark absinkt.

$HG-Mitteldruck anh.\ Zuschaltung$

Sammlerdruck, bei dem Heißgas zugeführt wird.

HG-Mitteldruckanh. Delta

Differenz, bei der das Heißgas wieder abgestellt wird.

PV Koordination

Folgende Einstellungen sind spezifisch für die Koordination mit dem PV Verbund:

PV Smart Start aktivieren

Aktiviert automatische Berechnung von "PV Start Vrec ÖG" in Abhängigkeit von Vrec-Ventiltypen, PV-Größe und Betriebsbedingungen.

PV Start Vrec ÖG

Öffnungsgrad des Vrec-Ventils beim Start des PV-Verdichters.

PV Start Tuning

Erlaubt dem Benutzer, "PV Start Vrec ÖG" zu ändern, wenn "PV Smart Start" aktiviert ist. Ein Wert von Null bewirkt, dass der Regler die Mindestdrehzahl des ersten PV-Verdichters anstrebt, ein negativer Wert führt zu einem früheren PV-Start (niedrigere Durchflussrate) und ein höherer Wert zu einem späteren PV-Start (höhere Durchflussrate).

PV Startverzög. Filter

Zeitkonstante für den Filter "Vrec ÖG", wenn er beim Vergleich mit "PV Start Vrec ÖG" zum Starten der IT-Verdichter angewandt wird.

PV Verzögerung

Die Dauer, während der der PV-Verdichter ausgeschaltet bleiben muss, bevor Vrec die Regelung übernimmt.

Parallel-Verdi. Sgc min.

Die Höchsttemperatur für den Betrieb mit einem PV-Verdichter. Startet nicht, wenn der Wert niedriger ist, ungeachtet des Öffnungsgrads des Vrec-Ventils.

Notfallmaßnahmen

Aktiviert spezifische Regelungnotmaßnahmen von anderen Reglern aufgrund eines zu niedrigen/hohen Sammlerdrucks.

Vhp schließ.bei max.Prec

Aktiviert die Übersteuerung des maximalen ÖG für das Hochdruckventil Vhp als Maßnahme gegen hohen Sammlerdruck.

Vhp offen bei min Prec

Aktiviert die Übersteuerung des minimalen ÖG für das Hochdruckventil Vhp als Maßnahme gegen niedrigen Sammlerdruck.

NK Ein bei max. Prec

Aktivieren, um die NK-Verdichterleistung als Maßnahme gegen hohen Sammlerdruck abzuschalten.

4.1.11 Einstellung des Sammlersollwerts mit Niederdruck Multi-Ejektoren

Designed to work with Low Pressure Multi Ejectors, this mode is available when the MT suction control is configured to alternate between two pressure transducers (Po-MT and Psuc-MT).

Receiver reference is always calculated as offset from MT suction reference. It uses a higher or a lower offset, determined by a digital input.

The related parameters are explained to the right.

For information on how to set these parameters, please see the application guide: "Low pressure lift ejector system"

Delta P Sollwert

Zeigt die aktuelle Druckdifferenz zwischen Prec-Sollwert und Ps-NK-Sollwert an.

LP Ej Delta P min

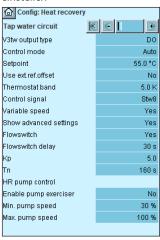
Die Druckdifferenz zwischen Prec-Sollwert und Ps-NK-Sollwert für den niedrigeren Prec-Sollwert (DI deaktiviert) angeben.

LP Ej Delta P max

Die Druckdifferenz zwischen Prec-Sollwert und Ps-NK-Sollwert für den niedrigeren Prec-Sollwert (DI aktiviert) angeben.

LP Ej Delta P max.Verzög

Nach Deaktivierung des Digitaleingangs für den Sollwert "Delta P max" verzögert der Parameter "LP Ej Delta P max. Verzög" das Zurückschalten auf den Sollwert "Delta P min" für die angegebene Zeit. Nach Aktivierung des Digitaleingangs wird immer eine Verzögerung von 30 Sekunden angewendet, um zum Sollwert "Delta P max" zurückzukehren.


4.1.12 Einstellung der Regelung der Wärmerückgewinnung

1. Konfigurationsmenü aufrufen

2. "Heizkreise" auswählen

3. Werte für Warmwasserkreis einstellen

Wenn im Menü "Anlagentyp auswählen" die Wärmerückgewinnung ausgewählt ist, erscheint das Menü "Heizkreise".

Das Warmwasser-Menü hat keinen Inhalt, wenn nur die Wärmerückgewinnung für die Raumheizung geregelt wird.

3 - Wärmerückgewinnung - Warmwasserkreislauf

(Einstellungen nur dann verfügbar, wenn in einem Kreislauf für Warmwasser geregelt werden soll)

V3tw Ausgangsart

DA: Das Ventil wird von einem Relaisausgang angesteuert. Schrittmotorventil (Ein/Aus): Das Ventil wird über einen Schrittmotorantrieb geregelt

Regelmodus: Hier kann die Regelung des Kreislaufs gestartet (Auto) und gestoppt (Aus) werden.

Sollwert: Hier kann die erforderliche Temperatur für den Sensor Stw8 eingestellt werden.

Ext. Sollw. Verschieb. nutzen

Der Temperatursollwert muss durch ein 0–10-V-Signal verschoben werden.

Max. Ext. Sollw. Verschieb.

Sollwertverschiebung bei max. Signal (10 V)

Thermostatbereich: Die zulässige Temperaturabweichung im Bereich des Sollwerts:

Steuersignal

Zur Auswahl stehen die folgenden Optionen:

Stw8: Wenn die Regelung nur über diesen Fühler erfolgen soll. Stw4-Stw3: Wenn der Regler mit dieser Temperaturdifferenz regeln soll, bis der Stw8-Sollwert erreicht ist.

(Während der Stw4-Stw3-Regelung muss die Pumpe stets drehzahlgeregelt sein).

 ${\it Stw8} + {\it Stw8A}. \\ \hbox{Wenn zwei Temperaturf} \\ \hbox{when im Warmwasserbeh} \\ \hbox{alter angeordnet sind.} \\$

Stw4: Die Regelung erfolgt über diesen Fühler.

Delta T: Sollwert als Temperaturdifferenz während der Stw4-Stw3-Regelung **Variable Drehzahl:** Hier wird der Pumpentyp ausgewählt. Entweder Drehzahlregelung oder Ein/Aus.

Weitere Einstellungen:

Die folgenden Optionen stehen zur Verfügung:

Strömungswächter: Muss normalerweise aus Sicherheitsgründen ausgewählt werden

Verzögerungszeit des Strömungswächters: Dauer des stabilen Signals vor der Verwendung des neuen Status bei der Regelung

Kp: Verstärkungsfaktor

Tn: Integrationszeit

Pumpentest aktivieren: Lassen Sie die Wasserpumpe nach 24 Stunden Inaktivität 30 Sekunden lang mit minimaler Drehzahl (mindestens 30 %) laufen.

Min. Pumpendrehzahl: Pumpendrehzahl für Start/Stopp Max. Pumpendrehzahl: Maximal zulässige Pumpendrehzahl

4. Einstellwerte für Wärmerückgewinnungskreis

Config: Heat recovery	
Heat reclaim circuit	□ □ □
V3hr output type	DO
Heat reclaim type	Max heat reclaim
Control mode	Auto
Setpoint	55.0 °C
Use ext.ref.offset	No
Thermostat band	5.0 K
Control signal	Shr8
Variable speed	Yes
Heat consumers	1
Heat consumer filter	5 s
Additional heat output	No
Show advanced settings	Yes
Flowswitch	Yes
Flowswitch delay	30 s
Kp	5.0
Tn	160 s
Tc max HR	27.0 °C
HR pump control	
Enable pump exerciser	No
Min. pump speed	30 %
Max. pump speed	100 %
HR stop limit	5 %
HR start limit	10 %
HR end delay - MT stop	0 s
HP control	
Pgc HR min.	49.00 bar
Pgc HR max	79.00 bar
Ref. offset low limit	25 %
Ref. offset high limit	70 %

Das Raumheizungs-Menü ist leer, wenn nur das Warmwasser geregelt wird.

4 - Wärmerückgewinnung - Wärmerückgewinnungskreis V3hr Ausgangsart

DA: Das Ventil wird von einem Relaisausgang angesteuert. Schrittmotorantrieb (Ein/Aus): Das Ventil wird von einem Schrittmotorantrieb geregelt

WRG-Hz Art

Hier wird festgelegt, wie der Gaskühlerdruck (HD) geregelt werden soll, wenn der Rückgewinnungskreislauf für die Heizung Wärme anfordert:

- Kein HD P-Band (einfache Regelung)
- HD P-Band. Hier muss der Regler ein Spannungssignal empfangen. Die für den Höchstwert gültigen Offsetwerte müssen in den Einstellungen des Wärmekreislaufs festgelegt werden. Siehe nächste Seite.
- Max. Wärmerückgewinnung. Hier muss der Regler ein Spannungssignal empfangen, aber die Regelung ist erweitert, d. h. auch die Ein- und Ausschaltung der Pumpe und das Bypassventil werden geregelt.

Regelmodus: Hier kann die Regelung des Kreises gestartet (Auto) und ausgeschaltet (Aus) werden

Sollwert: Hier wird die erforderliche Temperatur für den Fühler Shr8 (oder Shr4) eingestellt

Ext.Sollw.Verschieb.nutzen

Der Temperatursollwert muss durch ein 0–10-V-Signal verschoben werden Max. Ext.Sollw.Verschieb.

Sollwertverschiebung bei max. Signal (10 V)

Thermostatbereich: Die zulässige Temperaturabweichung im Bereich des Sollwerts:

Regelsignal: Zur Auswahl stehen die folgenden Optionen:

Shr8: Wenn die Regelung nur über diesen Fühler erfolgen soll. Shr4-Shr3: Wenn der Regler mit dieser Temperaturdifferenz regeln soll, bis der Shr8-Sollwert erreicht ist. (Während der Shr4-Shr3-Regelung muss die Pumpe stets drehzahlgeregelt sein.)

Shr4: Die Regelung erfolgt über diesen Fühler.

Variable Drehzahl: Hier wird Regelungsweise der Pumpe ausgewählt. Entweder Drehzahlregelung oder Ein/Aus

Wärmeverbraucher: (Nur wenn der Verflüssigungsdruck während der Wärmerückgewinnung erhöht werden soll.) Hier wird die Anzahl der empfangbaren Signale eingestellt. Das Signal kann entweder 0-10 V oder 0-5 V sein. (Einstellungen unter "Erweitert" werden zu 0–100 % für das Signal verwendet)

Wärmeverbraucher Filter

Schnelle Änderungen beim Wärmeverbrauchersignal verringern Zusätzliche Wärmeleistung

Mit dieser Funktion wird ein Relais reserviert. Das Relais wird zugeschaltet, wenn das Kühlersignal 95 % erreicht.

Weitere Einstellungen: Die folgenden Optionen stehen zur Verfügung:

Strömungswächter: Muss normalerweise aus Sicherheitsgründen ausgewählt werden

Verzögerungszeit des Strömungswächters: Dauer des stabilen Signals vor der Verwendung des neuen Status bei der Regelung Kp: Verstärkungsfaktor

Tn: Integrationszeit

Tc max WRG: Wert, bei dem der Bypass des Gaskühlers beendet wird WRG PUMPENREGELUNG

Pumpentest aktivieren: Lassen Sie die Wasserpumpe nach 24 Stunden Inaktivität 30 Sekunden lang mit minimaler Drehzahl (mindestens 30 %) laufen

Min. Pumpendrehzahl: Pumpendrehzahl für Start/Stopp Max. Pumpendrehzahl: Maximal zulässige Pumpendrehzahl WRG Stopp Grenze: Signal in %, bei dem die Pumpe wieder ausgeschaltet wird

WRG Start Grenze: Signal in %, bei dem die Pumpe gestartet wird Verzögerung WRG-Abschalt.– NK-Stopp: Zeitverzögerung nach dem Ausschalten des letzten NK-Verdichters, bevor die Pumpe in den Abschaltmodus wechselt (Wärmerückgewinnung nicht verfügbar) HD-REGELUNG

Pgc WRG min: Basis-Sollwert für den Druck beim Empfang des externen Spannungssignals.

Pgc WRG max: Sollwert für den Max-Druck beim Empfang des externen Spannungssignals.

SW-Verschieb-Min.Grenze: Signal in %, bei dem "Pgc WRG min." wirksam wird

 $\mathit{SW-Verschieb-Max.Grenze}$: Signal in %, bei dem der Wert "Sgc max." angewandt wird

BYPASS-REGELUNG (bei EIN-/AUS-Regelung)

V3gc Bypass-Abschaltgrenze: Signal in %, bei dem der Gaskühler nach einer vollständigen Abkopplung wieder integriert wird V3gc Bypass-Startgrenze: Signal in %, bei dem der Gaskühler getrennt wird

4.1.13 Einstellung der KPI- und COP-Berechnung

1. Konfigurationsmenü aufrufen

Im vorliegenden Beispiel wird die KPI-Regelung nicht verwendet. Die Einstellungen werden nur zu Informationszwecken aufgeführt.

2 – KPI Setup

KPI calculation (KPI = Key Performance Indicator, Leistungskennzahl) Bei Auswahl von "Ja" fordert die Funktion optional ein Signal vom Flüssigkeitsleitungssensor (Sliquid temp) an

Selected RFG

Hier wird das Kältemittel der Anlage angezeigt

Total swept volume MT

Hier wird das Gesamthubvolumen aller MT-Verdichter angezeigt

Total swept volume IT Hier wird das Gesamthu

Hier wird das Gesamthubvolumen aller IT-Verdichter angezeigt

Total swept volume LT

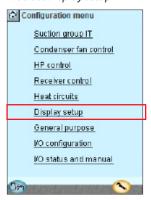
Hier wird das Gesamthubvolumen aller LT-Verdichter angezeigt **HR active**

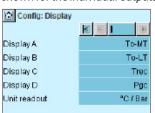
Hier wird der Status der Wärmerückgewinnung der Anlage (aktiv oder nicht aktiv) angezeigt

Coldest cabinet MT

Gewünschte Temperatur des kältesten Kühlmöbels des MT-Kreislaufs einstellen

Coldest cabinet LT


Gewünschte Temperatur des kältesten Kühlmöbels des LT-Kreislaufs einstellen


4.1.14 Einstellung der Displayanzeige

1. Go to Configuration menu

2. Select Display setup

3. Define which readings are to be shown for the individual outputs

3 – Konfig. Display

Display

Für die vier Ausgänge sind die folgenden Anzeigen möglich:

Verdichter-Regelungsfühler

P0 in Temperatur

P0 in bar (Druck)

Ss

Sd

Verflüssiger-Regelungsfühler

Tc

Pc bar S7

Sgc

Pgc bar

Prec bar

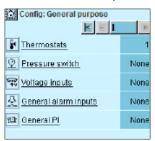
Trec

Drehzahl Verdichter

Maßeinheit

Auswählen, ob die Messwerte in SI-Einheiten (°C und bar) oder US-Einheiten (°F und psi) angezeigt werden sollen.

In our example, separate displays are not used. The setting is included here for information.



4.1.15 Konfiguration der Funktionen für die allgemeine Verwendung

- 1. Go to Configuration menu
- 2. Select General purpose

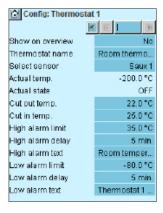
3. Define number of required functions

In our example we select one thermostat function for temperature control in the compressor room.

Die folgende Zahl der unterschiedlichen Funktionen kann eingestellt werden: 10 Thermostate 5 Druckschalter 5 Spannungssignale

10 Alarmsignale 6 PI-Regelungen

4.1.16 Separate Thermostate


1. "Thermostate" auswählen

2. Aktuelles Thermostat auswählen

3. Thermostatfunktion definieren

Im aktuellen Beispiel wurde eine Thermostatfunktion zur Überwachung der Temperatur im Maschinenraum ausgewählt.

Anschließend wurde eine Bezeichnung der Funktion eingegeben.

3 - Thermostate

Die allgemeinen Thermostate können zur Überwachung der aktiven Temperaturfühler sowie 4 weiterer Temperaturfühler genutzt werden. Jeder Thermostat verfügt über einen eigenen Ausgang zur Regelung der externen Automatik.

Einstellung der einzelnen Thermostate:

- Angabe, ob das Thermostat im Übersichtsbild 1 angezeigt werden soll. (Normalerweise wird die Funktion immer in Übersichtsbild 2 gezeigt.)
- Name
- · Art des verwendeten Fühlers (bzw. Signals)

Aktuelle Temp.

Temperaturmessungen des Fühlers, der an den Thermostat angeschlossen ist

Aktueller Status

Aktueller Status am Thermostatausgang

Ausschalttemp.

Abschaltwert für den Thermostat

Einschalttemp.

Einschaltwert für den Thermostat

Max. Alarmgrenze

Max. Alarmgrenze

Max. Alarmverzögerung

Zeitverzögerung für Alarm bei Erreichen der Obergrenze.

Text Max. Alarm

Alarmtext eingeben, der bei Erreichen der Obergrenze angezeigt werden soll.

Min. Alarmgrenze

Min. Alarmgrenze

Min. Alarmverzögerung

Zeitverzögerung für Alarm bei Erreichen der Untergrenze.

Text Min. Alarm

Alarmtext eingeben, der bei Erreichen der Untergrenze angezeigt werden soll.

4.1.17 Druckschalter

1. "Druckschalter" auswählen

Pressostats

2. Aktuellen Druckschalter auswählen

3. Druckschalterfunktion definieren

Im vorliegenden Beispiel werden keine separaten Druckschalterfunktionen verwendet.

3 - Druckschalter

Einstellungen wie bei Thermostaten

4.1.18 Separate Spannungssignale

1. "Spannungseingänge" auswählen

2. Aktuelles Spannungssignal auswählen

3. Dem Signal zugeordnete Bezeichnungen und Werte eingeben

Im vorliegenden Beispiel wird diese Funktion nicht benutzt, diese Anzeige wird daher nur zu Informationszwecken aufgeführt. Als Funktionsname kann xx eingegeben werden. Weiter

eingegeben werden. weiter unten in dieser Anzeige können die Alarmtexte eingegeben werden. Die Werte "Min. Auslesung" und "Max. Auslesewert" sind eigene Einstellungen und repräsentieren den unteren und oberen Wert des Spannungsbereichs, z. B. 2 V und 10 V. (Der Spannungsbereich wird bei der Einstellung

der Eingänge/Ausgänge festgelegt.) Bei der Einstellung der Eingänge/Ausgänge wird vom Regler für jeden festgelegten Spannungseingang ein Relaisausgang reserviert. Eine Definition dieses Relais

ist nicht erforderlich, wenn

über Datenkommunikation

nur eine Alarmmitteilung

erfolgen soll.

3 - Spannungseingänge

Die allgemeinen Eingänge können zur Überwachung externer Spannungssignale benutzt werden. Jeder Spannungseingang verfügt über einen eigenen Ausgang zur Regelung der externen Automatik. Für jeden der allgemeinen Spannungseingänge 1 – 5 festlegen:

Zeige in Übersicht

Name

Fühler auswählen (Signal, Spannung)

Das Signal auswählen, das die Funktion verwenden soll.

Aktueller Wert

= Anzeige des Messwerts

Aktueller Status

= Anzeige des Ausgangsstatus

Min. Auslesung

Gibt den Auslesungswert bei min. Spannungssignal an.

Max. Auslesewert

Gibt den Auslesungswert bei max. Spannungssignal an.

AusSw.

Abschaltwert für den Ausgang (skalierter Wert)

EinSw.

Einschaltwert für den Ausgang (skalierter Wert)

Ausschaltverzög.

Zeitverzögerung beim Abschalten

Einschaltverzö.

Zeitverzögerung beim Einschalten

Max. Alarmgrenze

Max. Alarmgrenze

Max. Alarmverzögerung

Zeitverzögerung für Alarm bei Erreichen der Obergrenze.

Max. Alarmtext

Alarmtext eingeben, der bei Erreichen der Obergrenze angezeigt werden soll.

Min. Alarmgrenze

Min. Alarmgrenze

Min. Alarmverzögerung

Zeitverzögerung für Alarm bei Erreichen der Untergrenze.

Min. Alarmtext

Alarmtext eingeben, der bei Erreichen der Untergrenze angezeigt werden soll.

4.1.19 Separate Alarmeingänge

1. "Generelle Alarmeingänge" auswählen

2. Aktuelles Alarmsignal auswählen

3. Dem Signal zugeordnete Bezeichnungen und Werte eingeben

Im aktuellen Beispiel wurde eine Alarmfunktion zur Überwachung des Flüssigkeitsstands im Sammler ausgewählt. Anschließend wurden eine Bezeichnung der Alarmfunktion und ein Alarmtext eingegeben.

3 – Generelle Alarmeingänge

Diese Funktion kann zur Überwachung unterschiedlichster digitaler Signale verwendet werden.

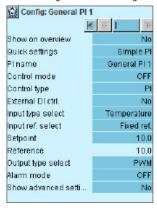
Anzahl der Eingänge

Die Anzahl der digitalen Alarmeingänge festlegen.

Für jeden Eingang Folgendes einstellen:

- Zeige in Übersicht
- Name
- Zeitverzögerung des DI-Alarms (gemeinsamer Wert für alle)
- Alarmtext

4.1.20 Separate PI-Funktionen


1. PI-Funktion auswählen

2. Aktuelle PI-Funktion auswählen

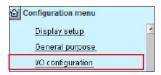
3. Der Funktion zugeordnete Bezeichnungen und Werte eingeben

Im vorliegenden Beispiel wird diese Funktion nicht benutzt, diese Anzeige wird daher nur zu Informationszwecken aufgeführt.

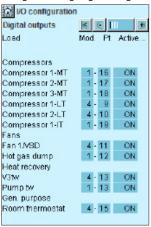
3 – Allgemeine PI-Regelung

Diese Funktion kann zur optionalen Regelung verwendet werden. Für jede Regelung Folgendes anpassen:

- Zeige in Übersicht
- Name
- Schnelleinstellungen


Hier findet sich eine Liste mit Vorschlägen für die PI-Regelung:

- Simple P
- Simple PI
- Heat control
- Cooling control
- Heat + Amb. Comp
- Pump delta P De-superheat
- Floor heat
- Dry cool 3WV
- Dry cool fan
- SH control
- Convert 0-5V Convert 5-10V
- Temp, to volt
- · Regelmodus: Aus, Manuell oder Auto
- · Regelungsart: P oder PI
- Externe DI-Regelung: Auf "Nein" eingestellt, wenn die Regelung durch einen externen Unterbrecher gestartet/gestoppt werden kann.
- Eingangsart wählen: Auswählen, welches Signal die Regelung empfangen soll: Temperatur, Druck, in Temperatur umgewandelter Druck, Spannungssignal, Tc, Pc, Ss, Sd usw.
- Eingangsbezugsauswahl: Entweder Festwert oder Signal für variablen Sollwert: Zur Auswahl stehen die folgenden Optionen: ohne, Temperatur, Druck, in Temperatur umgewandelter Druck, Spannungssignal, Tc, Pc, Ss, DI usw.
- · Sollwert: Wenn ein fester Sollwert ausgewählt ist.
- Anzeige des Gesamtsollwerts
- Ausgangsartenauswahl: Hier kann die Ausgangsfunktion ausgewählt werden (PWM = Pulsweitenmodulation (z. B. AKV-Ventil), Schrittsignal für Schrittmotor oder Spannungssignal.
- Alarmmodus: Auswählen, ob der Funktion ein Alarm zugeordnet werden soll. Bei Einstellung auf "EIN" können Alarmtexte und Alarmgrenzen eingegeben werden.
- Weitere Regelungseinstellungen:
 - Ref. X1, Y1 und X2, Y2: Punkte, die den variablen Bezugswert definieren und begrenzen.
 - PWM period time: Zeitdauer, während der das Signal ein- und ausgeschaltet war.
 - Kp: Verstärkungsfaktor
 - Tn: Integrationszeit
 - Filter für Sollwert: Dauer leichter Veränderungen des Sollwerts.
 - Max. Fehler: Maximal zulässiges Fehlersignal, bei dem der Integrator in der Regelung verbleibt.
 - Min. Regelwert: niedrigstes zulässiges Ausgangssignal.
 - Max. Regelwert: höchstes zulässiges Ausgangssignal.
 - Startzeit: Zeit beim Start, zu der das Ausgangssignal zwangsgeregelt wird.
 - Startausgang: Größe des Ausgangssignals zur Startzeit.
 - Stopprelais: Größe des Ausgangssignals, wenn die Regelung aus ist.



4.1.21 Konfiguration von Ein- und Ausgängen

- 1. Konfigurationsmenü aufrufen
- 2. "Ein-/Ausg. Konfigurat." auswählen

3. Digitale Ausgänge konfigurieren

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

4. Ein-/Aus-Eingänge einstellen

I/O configuration	n
Digital inputs	K C II D
Alarm (Function	Mod. P1 Activ
Ext. Main Switch	4 - 3 Closed
All compressors:	
Common safety MT	4 - 4 Open
Common safety LT	4 - 5 Open
Compressor 1-MT:	
General safety	3 - 1 Open
Compressor 2-MT:	
General safety	3 - 2 Open
Compressor 3-MT:	
General safety	3 - 3 Open
Compressor 1-LT:	
General safety	3 - 5 Open
Compressor 2-LT:	
General safety	3 - 8 Open
Compressor 1-IT:	
General safety	3 - 4 Open
Heat recovery	
Twienable	2 - 3 Closed
Gen. purpose	
DI1 alarm input	2 - 2 Open

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

Die nachfolgenden Schirmbilder sind abhängig von den vorausgehenden Einstellungen. Die Schirmbilder zeigen, welche Anschlüsse die vorausgehenden Einstellungen erfordern. Die Tabellen sind die gleichen wie früher gezeigt, aber hier gruppiert:

- · Digitale Ausgänge
- Digitale Eingänge
- Analoge Ausgänge
- Analogeingänge

Last	Ausgang	Modul	Punkt	Aktiv bei
Heißgasentladung	DO1	1	12	EIN
Umwälzpumpe tw	DO2	1	13	EIN
MT Verdichter 1 (VLT Start)	DO5	1	16	EIN
MT Verdichter 2	D06	1	17	EIN
MT Verdichter 3	D07	1	18	EIN
IT Verdichter (VLT Start)	DO8	1	19	EIN
LT-Verdichter 1 (VLT Start)	DO1	4	9	EIN
LT-Verdichter 2	DO2	4	10	EIN
Lüftermotoren (VLT Start)	DO3	4	11	EIN
Dreiwegeventil, Leitungswasser, Vtw	DO5	4	13	EIN
Raumventilator	DO7	4	15	EIN

Zur Konfiguration der digitalen Ausgänge des Reglers ist einzugeben, welches Modul und welcher Punkt dieses Moduls jeweils daran angeschlossen ist. Darüber hinaus ist für jeden Ausgang festzulegen, ob die Belastung bei Ausgang EIN oder AUS aktiv sein soll.

Achtung! Die Relaisausgänge bei Entlastungsventilen dürfen nicht vertauscht werden. Der Regler tauscht die Funktion selbst. An den Bypassventilen liegt keine Spannung an, wenn der Verdichter nicht in Betrieb ist. Die Spannung wird unmittelbar vor dem Start des Verdichters angelegt.

Funktion	Eingang	Modul	Punkt	Aktiv bei
Niveauschalter, CO ₂ -Behälter	AI2	2	2	Offen
Start/Stopp der Wärmerückgewinnung tw	AI3	2	3	Geschlossen
MT Verdichter 1 Allg. Sicherheit	AI1	3	1	Offen
MT Verdichter 2 Allg. Sicherheit	AI2	3	2	Offen
MT Verdichter 3 Allg. Sicherheit	AI3	3	3	Offen
IT Verdichter Allg. Sicherheit	Al4	3	4	Offen
LT Verdichter 1 Allg. Sicherheit	AI5	3	5	Offen
LT Verdichter 2 Allg. Sicherheit	Al6	3	6	Offen
Externer Hauptschalter	AI3	4	3	Geschlossen
MT-Verdichter gemeinsame Sicherheit	Al4	4	4	Offen
LT-Verdichter gemeinsame Sicherheit	Al6	4	6	Offen

Zur Konfiguration der digitalen Eingänge des Reglers ist einzugeben, welches Modul und welcher Punkt dieses Moduls jeweils daran angeschlossen ist.
Darüber hinaus ist für jeden Ausgang festzulegen, ob die Funktion bei Ausgang **Geschlossen** oder **Offen** ist. Hier wurde für alle Sicherheitskreise "Offen" gewählt. Das bedeutet, der Regler empfängt Signal bei Normalbetrieb und registriert es als Fehler, wenn das Signal unterbrochen wird.

Folgende Funktionen sind möglich: Verdi. 1 Entlastung 1 – 1 Entlastung 1 – 2 Entlastung 1 – 3 DO für Verdichter. 2 – 8 Ölventil Verdichter 1 – 2 Einspritz. Saugleitung Injection ON Lüfter 1 / VSD Lüfter 2 – 8 HD-Regelung Eiektor Ventil Gaskühler V3gc Sammlerdr.reglg. Wärmerückgewinnung Ventil Leitungswasser V3tw Pumpe Leitungswasser tw Ventil Wärmerückgew. V3hr Pumpe Wärmerückgew. hr Zusätzliche Wärme

3 - Ausgänge

4 – Digitale Eingänge

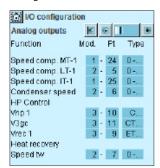
Spannungseingang 1 – 5

Alarm

In-Betrieb-Relais

Pressostat 1 – 5

PI 1 – 3 PWM


Thermostat 1 - 10

Folgende Funktionen sind möglich: Ext. Hauptschalter Ext. Verdichterstopp Ext. Spannungsverlust Nachtabsenkung Lastbegrenzung 1 Lastbegrenzung 2 Alle Verdichter: Gemeinsamer Schutz Verdi. 1 Öldruckschutz Überspannungsschutz Motortemperaturschutz Druckgastemp.schutz Abgangsdruckschutz Allgemeine Sicherheit VSD Verdi. Fehler DO für Verd. 2 – 8 Lüfter 1 Sicherheit DO für Lüfter 2 – 8 VSD Verfl. Sicherheit Ölregist. Min.Ölniveau Ölregist. Max.Ölniveau Ölabscheider Min 1 – 2 Ölabscheider Max 1 – 2 **AC limit** Rec. low liquid level Rec. high liquid level Wärmerückgewinnung tw aktiv hr aktiv Strömungsschalter tw Strömungsschalter hr DI 1 Alarm Eingang DI 2 - 10 ... PI-1 Di ref

External DI PI-1

5. Analoge Ausgänge konfigurieren

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

6. Analoge Eingangssignale konfigurieren

I/O configuration Analog inputs							
		-			Į,		
Sensor	Mod.		Ρt	Туре			
Po-MT suction	1	-	-6	AK3205			
Ss-MT suction	1	-	1	Pt 1000			
Sd-MT discha	-1	-	- 2	Pt 1000			
Po-LT suction	- 4	-	8	AK8205			
Ss-LT suction	- 4	-	1	Pt1000			
Sd-LT discharge	4	-	- 2	Pt1000			
Ss-IT suction	-1	-	3	Pt1000			
Sd-IT discharge	-1	-	4	Pt 1000			
Pc cand, pres.	- 1	-	7	AK8205			
Sc3	- 2	-	4	Pt1000			
HP Control							
Pgc	1	-	10	AK8205			
Prec	-1	-	11	AKS205			
Sgc temp.	1	-	9	Pt1000			
Heat recovery							
Stw2	- 3	-	7	Pt1000			
Stw8	1	-	-8	Pt1000			
Stw3	- 3	-	8	Pt1000			
Stw4	-4	-	-7	Pt 1000			
Gen. purpose							
Saux 1	1	-	-5	Pt 1000			

Funktion	Ausgang	Modul	Punkt	Тур
Drehzahlregelung, MT-Verdichter	AO1	1	24	0 – 10 V
Drehzahlregelung, IT-Verdichter	AO2	1	25	0 – 10 V
Drehzahlregelung, LT-Verdichter	AO1	2	5	0 – 10 V
Drehzahlregelung, Gaskühlerlüfter	AO2	2	6	0 – 10 V
Drehzahlregelung, Pumpe tw	AO3	2	7	0 – 10 V
Signal an Bypassventil, Vrec	Stufe 1	3	9	CCMT
Signal an Hochdruckventil, Vhp	Stufe 2	3	10	CCMT
Dreiwegeventil, Gaskühler, V3gc	Stufe 3	3	11	CTR

Fühler	Eingang	Modul	Punkt	Тур
Druckgastemperatur – Sd-MT	Al1	1	1	Pt 1000
Sauggastemperatur – Ss-MT	Al2	1	2	Pt 1000
Druckgastemperatur – Sd-IT	AI3	1	3	Pt 1000
Sauggastemperatur – Ss-IT	Al4	1	4	Pt 1000
Thermostatfühler im Maschinenraum – Saux1	AI5	1	5	Pt 1000
Saugdruck – P0-MT	Al6	1	6	AKS 2050-59
Verflüssigungsdruck – Pc-MT	AI7	1	7	AKS 2050-159
Leitungswassertemperatur – Stw8	Al8	1	8	Pt 1000
Temp. Gaskühlerausgang Sgc	AI9	1	9	Pt 1000
Gaskühlerdruck Pgc	Al10	1	10	AKS 2050-159
Kältemittelsammler, Prec CO ₂	Al11	1	11	AKS 2050-159
Temp. Gas-Bypass Shp	Al1	2	1	Pt 1000
Außentemperatur, Sc3	Al4	2	4	Pt 1000
Wärmerückgewinnung tw2	AI7	3	7	Pt 1000
Wärmerückgewinnung tw3	Al8	3	8	Pt 1000
Druckgastemperatur – Sd-LT	Al1	4	1	Pt 1000
Sauggastemperatur – Ss-LT	AI2	4	2	Pt 1000
Wärmerückgewinnung tw4	AI7	4	7	Pt 1000
Saugdruck – P0-LT	Al8	4	8	AKS 2050-59

5 - Analoge Ausgänge

Folgende Signale sind möglich:

0-10 V

2-10 V

0-5 V 1-5 V

10-0 V

5-0 V

Schrittmotor Ausgang

Schrittmotor Ausgang 2

Benutzerdefinierter Schrittmotor und Ventileinstellung: siehe Abschnitt "Sonstiges".

6 – Analoge Eingänge

Folgende Signale sind möglich: Temperaturfühler:

- Pt1000
- PTC 1000

Druckmessumformer

- AKS 32, -1 6 bar
- AKS 32R, -1 6 bar
- AKS 32, -1 9 bar
- AKS 32R, -1 9 bar
- AKS 32, -1 12 bar
- AKS 32R, -1 12 bar
- AKS 32, -1 20 bar
- AKS 32R, -1 20 bar
 AKS 32, -1 34 bar
- AKS 32R, -1 34 bar
- AKS 32, -1 50 bar
- AKS 32R, -1 50 bar
- AKS 2050, -1 59 bar
- AKS 2050, -1 99 bar
- AKS 2050, -1 159 bar
- MBS 8250, -1 159 bar
- Benutzerdefiniert (ratiometrisch, 10 % – 90 % von 5-V-Versorgungsspannung).

Min.- und Max.-Wert des Druckmessbereichs muss als Relativdruck eingestellt werden.

Po Saugdruck

Ss Sauggas

Sd Druckgas Pc Verflüss. druck

S7 Heißsole

Sc3 Außentemperatur

Ext. Ref. Signal

• 0 – 5 V,

• 0 – 10 V

Ölsammler HD-Regelung

Pgc

Prec

Sgc Shp

. Stw2,3,4,8

Shr2,3,4,8

HC 1 – 5

Wärmerückgewinnung

Saux 1 – 4

Paux 1 – 3

Spannungsingang 1 – 5

• 0 – 5 V,

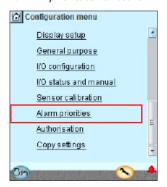
• 0 - 10 V,

• 1 – 5 V,

• 2 – 10 V

PI-in Temp

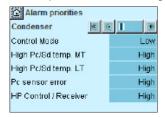
PI-ref Temp PI-in Spannung


PI-in pres.

PI-ref pres.

4.1.22 Einstellen von Alarmprioritäten

- 1. Konfigurationsmenü aufrufen
- 2. Alarmprioritäten einstellen


3. Prioritäten für Verbund einstellen

)

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

4. Alarmprioritäten für Verflüssiger einstellen

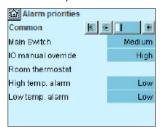
Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

Zahlreiche Funktionen sind durch einen Alarm abgesichert. Durch die getroffene Funktionsauswahl und die Einstellungen wurden alle aktuellen Alarme ermöglicht. Sie werden in den drei Abbildungen (mit Beschreibung) gezeigt.

Für alle Alarme lässt sich eine bestimmte Priorität festlegen:

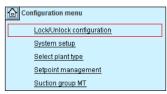
- •"Hoch" ist von höchster Bedeutung
- "Nur Log" ist die niedrigste Priorität
- "Getrennt" bewirkt keine Aktion

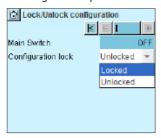
Der Zusammenhang zwischen Einstellung und Aktion wird in der Tabelle angezeigt.


Einstellung	Log	Alarmı	elaiswahl	Netzwerk	AKM-	
		Kein	Hoch	Niedrig –		dest.
			Hoch	Hoch		
Hoch	Χ		X	X	Х	1
Mittel	Χ			X	Х	2
Niedrig	Χ			X	Х	3
Nur Log	Х					4
Getrennt						

Siehe auch Alarmtexte Seite 131.

Im aktuellen Beispiel wurden die hier gezeigten Einstellungen ausgewählt.


5. Set alarm priorities for thermostat and extra digital signals


Im aktuellen Beispiel wurden die hier gezeigten Einstellungen ausgewählt.

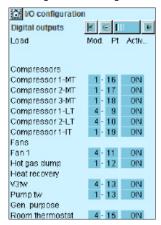
4.1.23 Konfiguration für Sperrung/Freigabe

- 1. Konfigurationsmenü aufrufen
- 2. "Lock/Unlock Konfiguration" auswählen

3. Konfiguration sperren

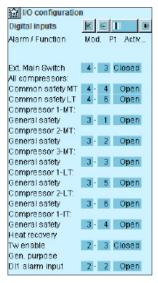
Der Regler vergleicht die gewählten Funktionen und definierten Ein- und Ausgänge. Das Ergebnis wird im nächsten Abschnitt gezeigt, in dem die Konfiguration überprüft wird. Klicken Sie auf das Feld neben **Konfiguration blockiert**. Wählen Sie **Blockiert** aus.

Damit wird die Reglerkonfiguration verriegelt. Wenn später Änderungen an der Reglerkonfiguration vorzunehmen sind, muss die Konfiguration zuvor freigegeben werden.



4.1.24 Überprüfung der Konfiguration

- 1. Konfigurationsmenü aufrufen
- 2. "Ein-/Ausg. Konfigurat." auswählen


3. Konfiguration der digitalen Ausgänge überprüfen

)

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

4. Konfiguration der digitalen Eingänge überprüfen

 \supset

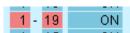
Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

Für diese Überprüfung muss die Konfiguration gesperrt sein. (Nur bei gesperrter Konfiguration sind alle Einstellungen für Ein- und Ausgänge aktiv.)

Die Konfiguration der digitalen Ausgänge entspricht der vorgenommenen Verdrahtung.

Die Konfiguration der digitalen Eingänge entspricht der vorgenommenen Verdrahtung.

Die folgende Anzeige weist auf einen Fehler hin:



Angabe ${\bf 0}$ – ${\bf 0}$ in einer definierten Funktion. Wenn eine Einstellung auf 0 – 0 zurückgestellt wurde, muss die Konfiguration nochmals überprüft werden.

Folgendes kann hierfür Auslöser sein:

- Die gewählte Kombination aus Modulnummer und Punktnummer existiert nicht.
- Die für das betreffende Modul gewählte Punktnummer wurde anderweitig konfiguriert.

Der Fehler lässt sich durch die richtige Konfiguration des Ausgangs beheben. Nicht vergessen, dass die Konfiguration freigegeben werden muss, bevor Sie die Modul- und Punktnummern ändern können.

Die Einstellungen werden mit einem **ROTEN** Hintergrund angezeigt.

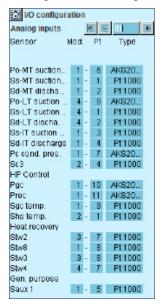
Wenn Einstellungen rot hinterlegt angezeigt werden, muss die Konfiguration nochmals überprüft werden.

Folgendes kann hierfür Auslöser sein:

 Der Ein- oder Ausgang wurde konfiguriert; später wurde die Konfiguration geändert, sodass die Einstellungen nicht mehr gültig sind.

Zur Behebung dieses Problems müssen die **Modulnummer und die Punktnummer auf 0** gesetzt werden.

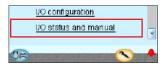
Nicht vergessen, dass die Konfiguration freigegeben werden muss, bevor Sie die Modul- und Punktnummern ändern können.


5. Konfiguration der analogen Ausgänge überprüfen

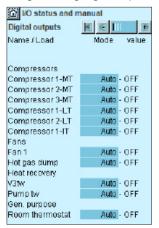
)

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

6. Konfiguration der analogen Eingänge überprüfen


Die Konfiguration der analogen Ausgänge entspricht der vorgenommenen Verdrahtung.

Die Konfiguration der analogen Eingänge entspricht der vorgenommenen Verdrahtung.



4.2 Überprüfung der Anschlüsse

- 1. Konfigurationsmenü aufrufen
- 2. "I/O Status und Manuell" auswählen

3. Digitale Ausgänge überprüfen

 \rightarrow

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

4. Digitale Eingänge überprüfen

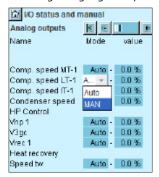
Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

Vor Beginn der Steuerung ist zu überprüfen, ob alle Eingänge und Ausgänge richtig angeschlossen wurden.

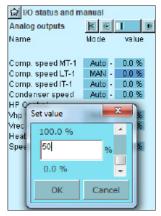
Für diese Überprüfung muss die Konfiguration gesperrt sein.

Mittels manueller Steuerung jedes Ausgangs kann geprüft werden, ob der Anschluss richtig vorgenommen wurde.

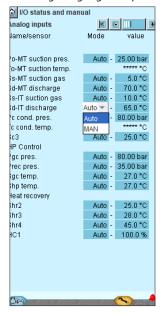
AUTO Der Ausgang wird vom Regler gesteuert


MAN OFFDer Ausgang wird zwangsgesteuert auf AUSMAN ONDer Ausgang wird zwangsgesteuert auf EIN

Den Sicherheitskreis für Verdichter 1 unterbrechen. Kontrollieren, ob die Leuchtdiode DI1 am Erweiterungsmodul (Modul 2) erlischt.


Prüfen, ob der Wert des Alarms der Sicherheitsüberwachung von Verdichter 1 auf **EIN** wechselt. Die übrigen digitalen Eingänge sind auf gleiche Weise zu prüfen.

5. Analoge Ausgänge überprüfen


6. Steuerung des Ausgang wieder auf "Automatisch" einstellen

)

Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

7. Analoge Eingänge überprüfen

Die Steuerung des Ausgangs auf "Manuell" einstellen. Klicken Sie auf das Feld **Modus**. Wählen Sie die Option **Hand** aus.

Klicken Sie auf das Feld **Wert**. Wählen Sie im Beispiel **50** % aus.

Wählen Sie **OK** aus.

Am Ausgang lässt sich daraufhin der erwartete Wert messen: Im aktuellen Beispiel sind das 5 V.

Zusammenhang zwischen einem definierten Ausgangssignal und einem manuell eingestellten Wert (Beispiele).

Definition	Einstellung			
	0 %	50 %	100 %	
0 – 10 V	0 V	5 V	10 V	
1 – 10 V	1 V	5,5 V	10 V	
0 – 5 V	0 V	2,5 V	5 V	
2 – 5 V	2 V	3,5 V	5 V	
10 – 0 V	10 V	5 V	0 V	
5 – 0 V	5 V	2,5 V	0 V	

Prüfen, ob alle Fühler sinnvolle Werte anzeigen. Im vorliegenden Fall sind keine Werte vorhanden.

Folgendes kann hierfür Auslöser sein:

- Der Fühler ist nicht angeschlossen.
- Der Fühler ist kurzgeschlossen.
- Punkt- oder Modulnummer sind nicht richtig konfiguriert.
- Die Konfiguration wurde nicht blockiert.

AUTO: Der analoge Eingangswert wird vom Regler verwendet.

MAN: Für den Analogeingang wird ein benutzerdefinierter Wert erzwungen.

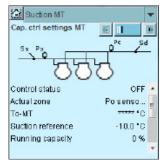
Hinweis: Wenn sich der Analogeingang im MAN-Modus befindet, erscheint der Alarm "Handbetätigung E/A" in der Alarmliste.

Es empfiehlt sich, den MAN-Modus nur während überwachter Inbetriebnahmephasen zu verwenden.

4.3 Überprüfung der Einstellungen

1. Übersichtsbild aufrufen

2. Sauggruppe auswählen


3. Alle Anzeigen zur Sauggruppe einzeln durchsehen

Wählen Sie die Schaltfläche + aus, um von einer Anzeige zur nächsten zu wechseln. Die Einstellungen ganz unten auf den Seiten nicht vergessen – sie können nur mithilfe der Bildlaufleiste eingesehen werden.

4. Die einzelnen Seiten überprüfen

5. Zum Übersichtsbild zurückkehren. Für IT und LT ebenso vorgehen

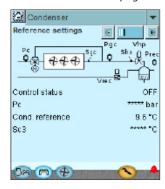
6. Die Verflüssigergruppe wählen

Vor der Inbetriebnahme ist zu überprüfen, ob alle Einstellungen wunschgemäß vorgenommen wurden.

Im Übersichtsbild wird für jede der allgemeinen Funktionen eine Zeile angezeigt. Über jedes Symbol kann auf eine Reihe von Anzeigen mit den verschiedenen Einstellungen zugegriffen werden. Alle diese Einstellungen sind zu prüfen.

Auf der letzten Seite werden die Regelungsdaten angezeigt.

7. Move on through all the individual displays for the condenser group.



Change displays with the + button. Remember the settings at the bottom of the pages – the ones that can only be seen via the "Scroll bar".

8. Check the individual pages

9. Go back to the overview and move on to the rest of the functions

10. General functions

When all the functions in overview display 1 have been reviewed, it is time to look at the "General functions" in overview display 2. Press the + button to access.

The first is the thermostat group

Check the settings.

11. Then the pressure switch group

Check the settings.

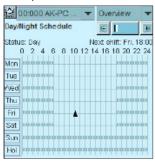
- 12. Proceed with the remaining functions
- 13. The controller set-up has been completed

Auf der letzten Seite werden die Sollwerteinstellungen angezeigt.

Alle definierten allgemeinen Funktionen sind im Übersichtsbild 2 zu sehen.

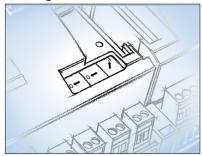
Die allgemeinen Funktionen sind immer im Übersichtsbild 2 zu sehen. Wahlweise kann jedoch auch festgelegt werden, dass sie in Übersichtsbild 1 angezeigt werden. Wenn einzelne Funktionen im Übersichtsbild 1 angezeigt werden sollen, kann dies über die Einstellung "Zeige in Übersicht" erfolgen.

4.4 Zeitplanfunktion


1. Konfigurationsmenü aufrufen

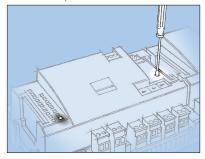
2. Zeitplanfunktion auswählen

3. Zeitplan einstellen


Vor Start der Steuerung ist die Zeitplanfunktion für die Nachtabsenkung des Saugdrucks einzustellen. In Fällen, in denen der Regler in einem mit einer Systemeinheit ausgestatteten Netz installiert ist, kann diese Einstellung in der Systemeinheit vorgenommen werden, die dann ein Tag/Nacht-Signal an den Regler sendet.

Einen Wochentag auswählen und die Tageszeitperioden einstellen. Mit den anderen Tagen fortfahren. Auf dem Bild wird eine vollständige Wochensequenz angezeigt.

4.5 Installation im Netzwerk


Adresse einstellen (im Beispiel wird 3 verwendet)
 Den rechten Adressschalter so drehen, dass er auf 3 zeigt.
 Die beiden anderen Adressschalter müssen mit dem Pfeil auf 0 zeigen.

2. Service-PIN drücken

Den Service-Pin so lange drücken, bis die Service-Pin-Leuchtdiode leuchtet.

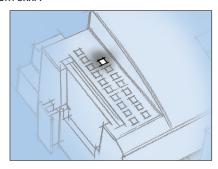
Hinweis: Service-PIN wird nicht für AK-SM 8xxA verwendet, nur Gateway.

- 3. Auf Antwort von der Systemeinheit warten
 Je nach Netzwerkumfang kann es bis zu einer Minute dauern,
 bis die Bestätigung vorliegt, dass der Regler im Netzwerk
 installiert wurde. Nach erfolgter Installation beginnt
 die Status-Leuchtdiode schneller als üblich zu blinken
 (zweimal pro Sekunde). Dies hält ca. 10 Minuten lang an.
- 4. Neue Anmeldung über das Service-Tool vornehmen

Falls das Service-Tool während der Verdrahtung des Reglers im Netzwerk verbunden war, ist eine Neuanmeldung beim Regler über das Service-Tool notwendig.

IP-Netzwerk mit Systemmanager und Verbundregler

Im Statusmenü lässt sich die vom Regler zugewiesene IP-Adresse überprüfen. Die IP-Adresse wird vom Verbundregler mithilfe der DHCP-Funktion des Routers automatisch erfasst. Die IP-Adresse ist lediglich informativ, da die tatsächliche Adresse des Reglers im Netzwerk die in den Schaltern eingestellte Adresse ist (wie auf Seite 11 erläutert).


Empfohlenes Kabel für die Netzwerkkommunikation:

- Ethernet-Kabel
- Geschirmtes Twisted Pair CAT5

Der Regler soll über ein Netzwerk fernüberwacht werden. In diesem Netzwerk wird dem Regler beispielsweise die Adresse 11 zugewiesen. Diese Adresse darf von keinem anderen Regler im gleichen Netzwerk benutzt werden.

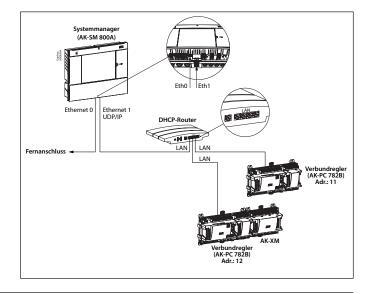
Anforderungen an die Systemeinheit

Als Systemeinheit kommen folgende Module infrage: - Serie AK-SM 8xxA

Falls keine Rückmeldung von der Systemeinheit erfolgt:

Beginnt die Status-Leuchtdiode nicht schneller als normal zu blinken, wurde der Regler nicht im Netzwerk installiert. Ursache dafür kann Folgendes sein:

Dem Regler wurde eine Adresse außerhalb des gültigen Bereichs zugewiesen


Die Adresse 0 darf nicht verwendet werden. Überprüfen Sie die reservierten Adressen in Abschnitt 2.3 Regler.

Die gewählte Adresse wird bereits von einem anderen Regler oder einer anderen Einheit im Netzwerk benutzt:

Die Adresseinstellung ist auf eine andere (freie) Adresse zu ändern.

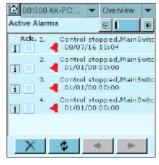
Die Verdrahtung wurde nicht korrekt ausgeführt. Die Terminierung wurde nicht korrekt ausgeführt.

Die Anforderungen an die Datenübertragung sind im Dokument "Datenkommunikationsverbindungen mit ADAP-KOOL® Kühlstellenreglern" RC8AC beschrieben.

4.6 Inbetriebnahme der Regelung

Prüfung der Alarme

1. Übersichtsbild aufrufen


Klicken Sie auf die blaue Schaltfläche mit Verdichter- und Verflüssigersymbol unten links im Display zum Aufrufen der Übersicht.

2. Alarmliste aufrufen

Klicken Sie auf die blaue mit Alarmglocke gekennzeichnete Schaltfläche unten im Display.

3. Aktive Alarme prüfen

4. Die behobenen Alarme aus der Liste löschen

Klicken Sie auf die Schaltfläche mit dem roten Kreuz, um behobene Alarme aus der Liste zu löschen.

5. Aktive Alarme erneut prüfen

Im vorliegenden Fall enthält die Liste eine Reihe von Alarmen. Die Liste ist zu bereinigen, sodass nur die relevanten Alarme angezeigt werden.

Im aktuellen Fall bleibt ein Alarm aktiv, weil die Steuerung gestoppt wurde.

Dieser Alarm muss bei angehaltener Steuerung aktiv sein. Jetzt ist die Steuerung startbereit.

Bitte beachten, dass aktive Anlagenalarme automatisch aufgehoben werden, wenn der Hauptschalter auf AUS gestellt wird. Werden nach Start der Steuerung Alarme angezeigt, muss die Ursache ermittelt und behoben werden.

4.6.1 Starten der Steuerung

1. Anzeige "Start/Stopp" aufrufen

Klicken Sie auf die blaue Schaltfläche für manuelle Steuerung unten im Display.

2. Steuerung starten

Klicken Sie auf das Feld neben **Hauptschalter**. Wählen Sie **EIN** aus.

Der Regler startet daraufhin die Steuerung der Verdichter und Lüfter.

Hinweis

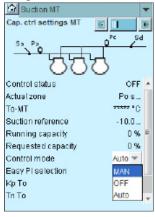
Der Regelbetrieb kann erst beginnen, wenn sich der interne und der externe Schalter beide in der Pos. "EIN" befinden.

Alle externen Verdichter-Unterbrecher müssen auf "EIN" stehen, damit die Verdichter starten.

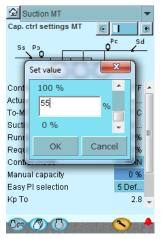
4.6.2 Manuelle Leistungsregelung

1. Übersichtsbild aufrufen

2. Sauggruppe auswählen



Klicken Sie auf die Schaltfläche für die Sauggruppe, die manuell geregelt werden soll.



Wählen Sie die Schaltfläche + aus, um die nächste Seite aufzurufen.

3. Regelmodus auf "Hand" einstellen

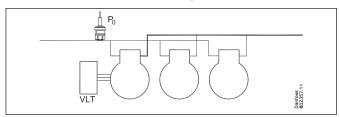
4. Den Leistungswert in Prozent einstellen Klicken Sie auf das blaue Feld neben Manuelle Leistung.

Besteht Bedarf für manuelle Leistungsregelung der Verdichter, können Sie wie folgt vorgehen:

Klicken Sie auf das blaue Feld neben Regelmodus. Wählen Sie die Option Hand aus.

Stellen Sie die Leistung auf den gewünschten Prozentsatz ein. Wählen Sie **OK** aus.

5. Regulating functions


In diesem Abschnitt wird die Arbeitsweise der verschiedenen Funktionen beschrieben.

5.1 Sauggruppe

Regelungsfühler

Der Leistungsregler kann die Regelung gemäß dem Saugdruck PO ausführen.

Die IT-Verdichter werden ebenfalls gemäß dem Saugdruck geregelt. Allerdings wird das Signal hier vom Sammler – Prec – empfangen. Auf Seite 118 finden Sie eine Beschreibung für IT-Verdichter.

Ein Fehler am Regelungsfühler kann dazu führen, dass der Betrieb mit einer zugeschalteten Leistung von z. B. 50 % (Tagesbetrieb) und 25 % (Nachtbetrieb), mindestens jedoch für eine Stufe, fortgeführt wird.

Sollwert

Der Sollwert für den Regler kann auf zwei Arten definiert werden: Entweder

 $\label{eq:portion} PORef = PO-Einstellung + PO-Optimierung + Nachtverschiebung \\ oder$

P0Ref = P0-Einstellung + Ext. Sollwert + Nachtverschiebung

P0-Einstellung

Ein Basiswert für den Saugdruck ist einzustellen.

P0-Optimierung

Diese Funktion verschiebt den Sollwert, damit die Regelung nicht mit einem niedrigeren Saugdruck als erforderlich erfolgt. Die Funktion arbeitet mit den Reglern der einzelnen Kühlmöbel und einem System-Manager zusammen. Der System-Manager ruft die Daten von den einzelnen Regelungen ab und passt den Saugdruck an den energiemäßig optimalen Betrieb an. Die Funktion ist im System-Manager-Handbuch beschrieben.

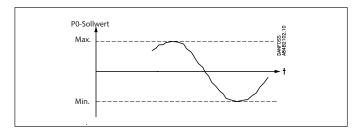
Mit der Funktion lässt sich auch ermitteln, welches Kühlmöbel zurzeit die höchste Belastung aufweist sowie welche Verschiebung für den Saugdrucksollwert zugelassen ist.

Nachtverschiebung

Die Funktion kommt zur Anwendung, wenn bei Kühlmöbeln Nachtabsenkung als Energiesparfunktion benutzt wird. Mit dieser Funktion lässt sich der Sollwert mit bis zu 25 K in positiver oder negativer Richtung verschieben. (Bei Verschiebung auf einen höheren Saugdruck ist ein positiver Wert einzustellen.) Die Verschiebung lässt sich auf dreifache Weise aktivieren:

- · Durch Signal an einem Eingang
- Mittels der Übersteuerungsfunktion einer Systemeinheit
- · Über einen internen Zeitplan

Die Funktion "Nachtverschiebung" sollte normalerweise nicht angewandt werden, wenn mit der Übersteuerungsfunktion "PO-Optimierung" geregelt wird. (In diesem Fall passt die Übersteuerungsfunktion selbst den Saugdruck an den höchsten zulässigen Wert an.)


Ist eine kurze Saugdruckänderung notwendig (z. B. bis zu 15 Min. in Verbindung mit einer Abtauung), kann diese Funktion verwendet werden. Hier schafft es die P0-Optimierung nicht für die Änderung zu kompensieren.

Übersteuerung mit einem 0-10-V-Signal

Der Sollwert des Reglers kann durch Anschluss an ein Spannungssignal verschoben werden. Bei der Systemkonfiguration ist festzulegen, wie groß die Verschiebung beim höchsten Signal (10 V) und beim niedrigsten Signal sein soll.

Begrenzung des Sollwerts

Um einem zu hohen oder zu niedrigen Regelsollwert vorzubeugen, ist eine Sollwertbegrenzung einzustellen.

Zwangssteuerung der Verdichterleistung in der Sauggruppe

Eine Zwangssteuerung der Leistung ist möglich, wobei die normale Regelung außer Acht gelassen wird.

Abhängig von der gewählten Form der Zwangssteuerung werden die Sicherheitsfunktionen annulliert.

Zwangssteuerung durch Übersteuerung der gewünschten Leistung

Die Anpassung wird auf manuell gestellt und die gewünschte Leistung wird in % der möglichen Verdichterleistung eingestellt.

Zwangssteuerung durch Übersteuerung digitaler Ausgänge

Die einzelnen Ausgänge können im Programm auf MAN EIN oder MAN AUS eingestellt werden. Die Regelungsfunktion berücksichtigt dies nicht, aber es wird ein Alarm ausgegeben, dass der Ausgang übersteuert wird.

Zwangssteuerung mittels Umschalter

Wenn die Zwangssteuerung mit den Schaltern an der Front eines Erweiterungsmoduls aktiviert wird, wird dies von der Reglerfunktion nicht registriert und es werden keine Alarme erzeugt. Der Regler arbeitet weiter und steuert die übrigen Relais.

Koordinierung der LT- und MT-Verdichter

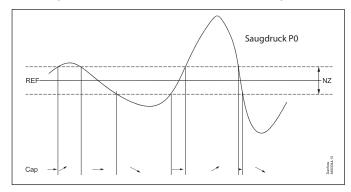
Die LT-Verdichter (Niederdruck) dürfen erst anlaufen, wenn die MT-Regelung (Mitteldruck) betriebsbereit ist, wobei die Verdichter nicht unbedingt bereits angelaufen sein müssen.

Die LT-Regelung wird dann bei Bedarf aktiviert. Wenn dies eintritt, registriert die MT-Regelung den Druckanstieg und schaltet bei gewünschtem Druck sofort die MT-Verdichter ein.

5.2 Leistungsregler für Verdichter

Leistungsregelung

AK-PC 782B kann bis zu drei Verdichtergruppen (MT, IT und LT) steuern. Jeder Verdichter kann bis zu drei Entlastungen haben. Ein oder zwei Verdichter können mit einer Drehzahlregelung ausgestattet sein.


Die Zuschaltleistung wird mit Signalen vom angeschlossenen Druckmessumformer und unter Bezug auf den eingestellten Sollwert geregelt.

Legen Sie eine Neutralzone um den Sollwert fest.

In der Neutralzone kontrolliert der regelnde Verdichter die Leistung, damit der Druck aufrechterhalten werden kann. Wenn er den Druck nicht mehr in der Neutralzone halten kann, schaltet der Regler den nächsten Verdichter der Sequenz ab oder zu.

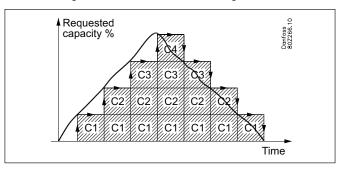
Wird zusätzliche Leistung zu- oder abgeschaltet, wird die Leistung des regelnden Verdichters entsprechend angepasst, um den Druck in der Neutralzone zu halten (nur bei Verdichtern mit variabler Leistung).

- Wenn der Druck über "Sollwert + halbe Neutralzone" liegt, ist ein Zuschalten des nächsten Verdichters (Pfeil nach oben) gestattet.
- Wenn der Druck unter "Sollwert halbe Neutralzone" liegt, ist die Abschaltung eines Verdichters (Pfeil nach unten) gestattet.
- Wenn der Druck innerhalb der Neutralzone liegt, wird der Prozess mit den derzeit aktivierten Verdichtern fortgesetzt. Das Entlasten der Ventile (sofern vorhanden) wird aktiviert, je nachdem, ob der Saugdruck ober- oder unterhalb des Referenzwerts liegt.

Leistungsänderung

Der Regler erhöht oder verringert die Leistung auf der Basis folgender Grundregeln:

Leistungssteigerung:


Der Leistungsverteiler schaltet zusätzliche Verdichterleistung hinzu, sobald die gewünschte Leistung auf einen Wert angestiegen ist, der den Start der nächsten Verdichterstufe erlaubt. Mit Bezug auf das folgende Beispiel wird eine Verdichterstufe hinzugefügt, sobald für diese Verdichterstufe "Platz" unter der gewünschten Leistungskurve ist.

Leistungsverringerung:

Der Leistungsverteiler schaltet Verdichterleistung ab, sobald die gewünschte Leistung auf einen Wert gefallen ist, der den Stopp des nächsten Verdichters erlaubt. Mit Bezug auf das folgende Beispiel wird eine Verdichterstufe abgeschaltet, sobald kein "Platz" mehr für diese Verdichterstufe über der gewünschten Leistungskurve ist.

Beispiel:

Vier Verdichter gleicher Größe – so sieht die Leistungskurve aus

Abschalten der letzten Verdichterstufe:

Normalerweise wird die letzte Verdichterstufe erst dann abgeschaltet, wenn die gewünschte Leistung 0 % erreicht hat und sich der Saugdruck unter der Neutralzone befindet.

Laufzeit erste Stufe

Beim Starten muss das Kühlsystem Zeit haben sich zu stabilisieren, bevor der Pl-Regler die Anpassung übernimmt. Zu diesem Zweck ist beim Start einer Anlage eine Leistungsbegrenzung aktiv, sodass in einem festgelegten Zeitraum nur die erste Leistungsstufe hinzugeschaltet wird (über "erste Stufe der Laufzeit" einstellbar).

Pump-down-Funktion:

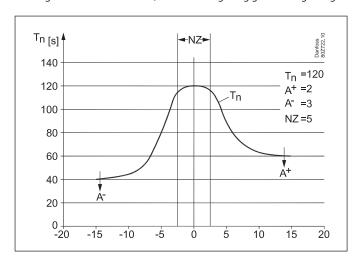
Um häufiges Starten/Stoppen des Verdichters bei geringer Belastung zu vermeiden, kann für den letzten Verdichter eine Pump-down-Funktion festgelegt werden.

Ist diese aktiv, wird der Verdichter abgeschaltet, wenn der aktuelle Saugdruck den eingestellten Grenzwert erreicht hat.

Wenn sich der Pump-down-Grenzwert der Neutralzone nähert, wird er auf NZ minus 1 K begrenzt. Dies kann der Fall sein, wenn der Sammlerdruck optimiert wurde.

Beachten Sie, dass der Pump-down-Grenzwert höher sein sollte als die eingestellte Sicherheitsgrenze für geringen Saugdruck "Min Po".

Bei den IT-Verdichtern wird die Funktion "Pump down" über die Sammlertemperatur und MT geregelt.


Variable Integrationszeit

Es gibt zwei Parameter, um Tn variabel einzustellen. Je weiter der Druck vom Referenzwert abweicht, desto schneller kann die Regelung erfolgen. Die Einstellung A+ senkt Tn, wenn der Druck oberhalb des Referenzwerts liegt. Die Einstellung A- senkt Tn, wenn der Druck unterhalb des Referenzwerts liegt.

Im unteren Diagramm wurde Tn auf 120 s eingestellt. Wenn der Druck oberhalb des Referenzwerts liegt, wird Tn auf 60 s gesenkt und wenn der Druck unterhalb des Referenzwerts liegt, wird Tn auf auf 40 s gesenkt. Oberhalb des Referenzwerts: Tn auf den Wert einstellen, der sich aus Tn geteilt durch A+ ergibt.

Unterhalb des Referenzwerts: Tn auf den Wert einstellen, der sich aus Tn geteilt durch A- ergibt.

Der Regler berechnet die Kurve, sodass die Regelung gleichmäßig erfolgt.

Regelungsparameter

Zur einfacheren Inbetriebnahme der Anlage wurden die Regelungsparameter in Gruppen von häufig verwendeten Werten eingeteilt, die sogenannten "einfachen Einstellungen". Verwenden Sie diese Gruppen, um die für eine Anlage mit langsamer oder schneller Reaktion geeigneten Einstellungen auszuwählen. Die Werkseinstellung beträgt 5. Wenn Sie eine Feinabstimmung der Regelung durchführen möchten, wählen Sie die "benutzerdefinierten" Einstellungen aus. Alle Parameter können dann frei eingestellt werden.

Einfache	Regelungsparameter					
Einstellung	Кр	Tn	A+	A-		
1 = Äußerst langsam	1,0	200	3,5	5,0		
2	1,3	185	3,5	4,8		
3 = Eher langsam	1,7	170	3,5	4,7		
4	2,1	155	3,5	4,6		
5 = Standard	2,8	140	3,5	4,4		
6	3,6	125	3,5	4,2		
7 = Eher schnell	4,6	110	3,5	4,1		
8	5,9	95	3,5	4,0		
9	7,7	80	3,5	3,8		
10 = Äußerst schnell	9,9	65	3,5	3,5		
Benutzerdefiniert	1,0 – 10,0	10 – 900	1,0 – 10,0	1,0 – 10,0		

5.2.1 Verfahren zur Leistungsverteilung

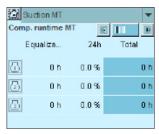
Der Leistungsverteiler kann zwei Prinzipien für die Verteilung anwenden.

Anschlussmuster - Zyklusbetrieb:

Dieses Prinzip wird verwendet, wenn alle Verdichter von gleicher Art und Größe sind.

Die Verdichter werden nach dem Prinzip "First In First Out" (FIFO) zu- und abgeschaltet, um einen Betriebsstundenausgleich zwischen den Verdichtern zu gewährleisten.

Drehzahlgeregelte Verdichter werden stets zuerst hinzugeschaltet, die variable Leistung dient dazu, plötzliche Leistungsabfälle zwischen den nachfolgenden Stufen auszugleichen.


Zeitschaltbegrenzungen und Sicherheitsabschaltungen Kann ein Verdichter nicht starten, weil er an der Zeitschaltuhr "hängt" oder die Sicherheitsabschaltung aktiv ist, wird diese Stufe durch einen anderen Verdichter ersetzt.

Wenn ein Verdichter mit Leistungsstufen aufgrund einer Beschränkung durch einen Timer nicht starten kann, darf auch kein einstufiger Verdichter starten. Wenn die Timer-Beschränkung abgelaufen ist, startet der Verdichter mit den Leistungsstufe.

Betriebszeitausgleich

Der Betriebszeitausgleich erfolgt zwischen Verdichtern desselben Typs mit gleicher Gesamtleistung.

- Bei den verschiedenen Starts wird der Verdichter mit der niedrigsten Betriebsstundenzahl zuerst gestartet.
- Bei den verschiedenen Stopps wird der Verdichter mit der höchsten Betriebsstundenzahl zuerst gestoppt.
- Bei Verdichtern mit mehreren Stufen erfolgt der Betriebszeitausgleich zwischen den Hauptstufen der Verdichter.

- In der linken Spalte werden die Betriebsstunden angezeigt, auf deren Basis der Regler ausgleicht.
- Die mittlere Spalte zeigt (als Prozentsatz), in welchem Ausmaß einzelne Verdichter innerhalb der letzten 24 Stunden aktiviert wurden.
- In der rechten Spalte wird die aktuelle Betriebszeit des Verdichters gezeigt. Dieser Wert muss nach Austausch des Verdichters zurückgestellt werden.

Anschlussmuster - Best-Fit-Betrieb

Dieses Prinzip wird verwendet, wenn Verdichter unterschiedlicher Größe zum Einsatz kommen.

Der Leistungsverteiler schaltet Verdichterleistung hinzu oder ab, damit Leistungssprünge möglichst gering ausfallen.

Drehzahlgeregelte Verdichter werden stets zuerst hinzugeschaltet, und die variable Leistung dient dazu, plötzliche Leistungsabfälle zwischen den nachfolgenden Stufen auszugleichen.

Zeitschaltbegrenzungen und Sicherheitsabschaltungen Kann ein Verdichter nicht starten, weil er an der Zeitschaltuhr "hängt" oder die Sicherheitsabschaltung aktiv ist, wird diese Stufe durch einen anderen Verdichter oder eine andere Kombination ersetzt.

Wenn ein Verdichter mit Leistungsstufen aufgrund einer Beschränkung durch einen Timer nicht starten kann, darf auch kein einstufiger Verdichter starten. Wenn die Timer-Beschränkung abgelaufen ist, startet der Verdichter mit den Leistungsstufen.

5.2.2 Verbundtypen – Verdichterkombinationen

Der Regler kann Aggregate (Power Packs) mit Verdichtern unterschiedlichen Typs steuern.

- Ein oder zwei drehzahlgeregelte Verdichter
- Leistungsgeregelte Verdichter mit bis zu drei Entlastungsventilen
- Einstufiger Verdichter Kolben

Aus folgender Tabelle geht hervor, welche Verdichterkombinationen vom Regler gesteuert werden können. Außerdem werden die Schaltprinzipien angezeigt, die für die einzelnen Verdichterkombinationen infrage kommen.

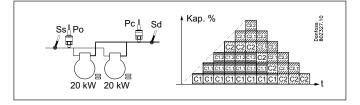
Kombination	Beschreibung		llt- zip
		Zyklisch	Best-Fit
000	Einstufige Verdichter. *1	х	х
	Ein Verdichter mit Entlastungsventilen, zusammen mit einstufigen Verdichtern. *2	х	
	Zwei Verdichter mit Entlastungsventilen, zusammen mit einstufigen Verdichtern. *2	х	
	Alle Verdichter mit Entlastungsventilen.*2	х	
	Ein drehzahlgeregelter Verdichter, zusammen mit einstufigen Verdichtern. *1 und *3	х	х
	Ein drehzahlgeregelter Verdichter in Kombination mit einem Ver- dichter mit Leistungsstufe(n) und einstufigen Verdichtern. *1 und *3	х	
	Ein drehzahlgeregelter Verdichter, zusammen mit mehreren Verdichtern mit Entlastungsventilen.*2 und *3	x	
	Zwei drehzahlgeregelte Verdichter, zusammen mit einstufigen Verdichtern. *4	х	х

- *1) Bei einem zyklischem Schaltprinzip müssen einstufige Verdichter dieselbe Größe aufweisen.
- *2) Für Verdichter mit Entlastungsventilen gilt allgemein, dass sie dieselbe Größe, dieselbe Anzahl Entlastungsventile (max. 3) sowie dieselbe Größe der Hauptstufen aufweisen müssen. Werden Verdichter mit Entlastungsventilen mit einstufigen Verdichtern kombiniert, müssen alle Verdichter dieselbe Größe aufweisen.
- *3) Drehzahlgeregelte Verdichter können sich größenmäßig von nachgeschalteten Verdichtern unterscheiden.
- *4) Bei Einsatz zweier drehzahlgeregelter Verdichter müssen diese denselben Frequenzbereich aufweisen.
 Bei zyklischem Schaltprinzip müssen die beiden drehzahlgeregelten Verdichter dieselbe Größe aufweisen, was auch für die nachfolgenden einstufigen Verdichter gilt.

Anhang A enthält eine detaillierte Beschreibung der Schaltprinzipien der einzelnen Anlagen mit entsprechenden Beispielen.

Im Folgenden werden einige allgemeine Regeln für den Umgang mit leistungsgeregelten und drehzahlgeregelten Verdichtern sowie für zwei drehzahlgeregelte Verdichter erläutert.

Leistungsgeregelte Verdichter mit Entlastungsventilen


Mit dem Entlastungsregelmodus wird festgelegt, wie der Leistungsverteiler mit den betreffenden Verdichtern umgehen soll.

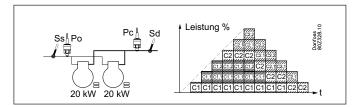
Entlastungsregel modus = 1

Hier erlaubt der Leistungsverteiler, dass jeweils nur ein Verdichter entlastet wird. Der Vorteil dieser Einstellung besteht darin, dass der Betrieb mehrerer Verdichter im entlasteten Zustand vermieden wird, um Energie zu sparen.

Beispiel:

Zwei leistungsgeregelte Verdichter à 20 kW mit jeweils zwei Entlastungsventilen, zyklisches Schaltprinzip.

- Bei fallender Leistung wird der Verdichter mit den meisten Betriebsstunden (C1) entlastet.
- Ist C1 vollständig entlastet, wird er abgeschaltet, bevor Verdichter C2 entlastet wird.


Entlastungsregelmodus = 2

Hier lässt der Leistungsverteiler bei fallender Leistung die Entlastung von zwei Verdichtern zu.

Der Vorteil bei dieser Einstellung ist, dass dadurch die Häufigkeit der Starts/Stopps von Verdichtern vermindert wird.

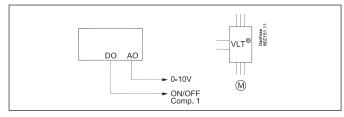
Beispiel:

Zwei leistungsgeregelte Verdichter à 20 kW mit jeweils zwei Entlastungsventilen, zyklisches Schaltprinzip.

- Bei fallender Leistung wird der Verdichter mit den meisten Betriebsstunden (C1) entlastet.
- Ist C1 vollständig entlastet ist, wird Verdichter C2 um eine Stufe entlastet, bevor C1 abschaltet.

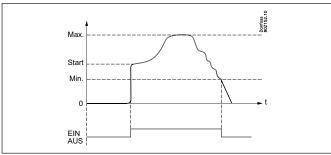
Achtung!

Die Relaisausgänge bei Entlastungsventilen dürfen nicht vertauscht werden. Der Regler tauscht die Funktion selbst. An den Bypassventilen liegt keine Spannung an, wenn der Verdichter nicht in Betrieb ist. Die Spannung wird unmittelbar vor dem Start des Verdichters angelegt.


Drehzahlgeregelte Verdichter:

Der Regler kann für den führenden Verdichter in verschiedenen Verdichterkombinationen die Drehzahlregelung verwenden. Die Variabilität des drehzahlgeregelten Verdichters wird dazu genutzt, Leistungsabfälle der nachfolgenden Verdichterstufen auszugleichen.

Allgemeines zur Handhabung:

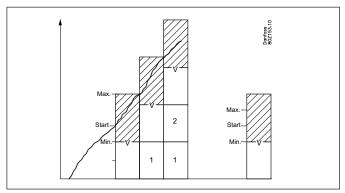

Eine oder zwei der festgelegten Leistungsstufen zur Verdichterregelung lassen sich mit der Drehzahlregelung schalten. Hierbei kann es sich z. B. um einen Frequenzumrichter des Typs VLT handeln.

Ein Ausgang wird an den EIN-/AUS-Eingang des Frequenzumrichters angeschlossen, und gleichzeitig wird ein analoger Ausgang "AO" mit dem analogen Eingang des Frequenzumrichters verbunden. Mit dem EIN-/AUS-Signal wird der Frequenzumrichter gestartet und gestoppt, mit dem analogen Signal wird die Drehzahl angegeben. Nur bei dem als Verdichter 1 (1+2) festgelegten Verdichter lässt sich die Drehzahl regeln.

Eine in Betrieb befindliche Stufe besteht aus einer festen Leistung und einer variablen Leistung. Die feste Leistung ist diejenige, die der angegebenen Mindestdrehzahl entspricht, die variable Leistung bewegt sich zwischen der Mindest- und der Höchstdrehzahl. Um die beste Regelung zu erreichen, muss die variable Leistung größer sein als die nachfolgenden Leistungsstufen, die im Rahmen der Regelung erforderlich sind. Bei heftigen kurzzeitigen Schwankungen im Leistungsbedarf der Anlage nimmt der Bedarf an variabler Leistung zu.

So wird die Stufe zu- und abgeschaltet:

Zuschaltung


Der drehzahlgeregelte Verdichter wird immer als erster gestartet und als letzter gestoppt. Der Frequenzumrichter wird gestartet, wenn ein der "Startdrehzahl" entsprechender Leistungsbedarf entsteht (der Relaisausgang wechselt zu EIN, und am analogen Ausgang liegt eine dieser Drehzahl entsprechende Spannung an). Aufgabe des Frequenzumrichters ist es nun, die Drehzahl auf die "Startdrehzahl" zu bringen.

Jetzt wird die Leistungsstufe zugeschaltet, und die gewünschte Leistung wird vom Regler bestimmt.

Die Startdrehzahl muss immer so hoch angesetzt werden, dass beim Anfahren schnell eine gute Schmierung des Verdichters erzielt wird.

Regelung - steigende Leistung

Steigt der Leistungsbedarf über die "Höchstdrehzahl" an, wird die nachfolgende Verdichterstufe zugeschaltet. Gleichzeitig wird die Drehzahl der Leistungsstufe reduziert, sodass die Leistung um einen Wert reduziert wird, welcher genau der soeben zugeschalteten Verdichterstufe entspricht. Auf diese Weise wird ein völlig "ruckfreier" Übergang ohne Leistungsabfälle erzielt (siehe auch Grafik).

Regelung – sinkende Leistung

Sinkt der Leistungsbedarf unter die "Mindestdrehzahl", wird die nachfolgende Verdichterstufe abgeschaltet. Gleichzeitig wird die Drehzahl der Leistungsstufe erhöht, sodass die Leistung um einen Wert gesteigert wird, welcher genau der soeben abgeschalteten Verdichterstufe entspricht.

Abschaltung

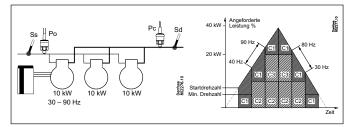
Die Leistungsstufe wird abgeschaltet, wenn der Verdichter die "Mindestdrehzahl" erreicht hat und der Leistungsbedarf (gewünschte Leistung) auf unter 1 % gesunken ist.

Zeitschaltbegrenzung eines drehzahlgeregelten Verdichters Wenn der drehzahlgeregelte Verdichter wegen einer Zeitschaltbegrenzung nicht starten darf, darf auch kein anderer Verdichter starten. Der drehzahlgeregelte Verdichter startet, sobald die Zeitschaltbegrenzung abgelaufen ist.

Sicherheitsabschaltung eines drehzahlgeregelten Verdichters Wenn der drehzahlgeregelte Verdichter aus Sicherheitsgründen abgeschaltet wird, dürfen andere Verdichter starten. Sobald der drehzahlgeregelte Verdichter startbereit ist, wird er als erster Verdichter gestartet.

Wie bereits erwähnt, muss der variable Teil der drehzahlgeregelten Leistung größer sein als die Leistung der nachfolgenden Verdichterstufen, um eine Leistungskurve ohne "Löcher" zu erhalten. Um darzustellen, wie die Drehzahlregelung bei verschiedenen Aggregat-Kombinationen reagiert, werden hier einige Beispiele angeführt:

a) Variable Leistung ist größer als nachfolgende Verdichterstufen:


Wenn der variable Teil der Leistung des drehzahlgeregelten Verdichters größer ist als die nachfolgenden Verdichter, entstehen keine "Löcher" in der Leistungskurve.

Beispiel:

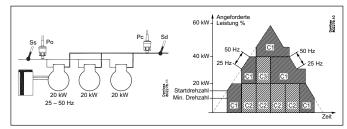
1 Drehzahlgeregelter Verdichter mit einer Nennleistung von 10 kW bei 50 Hz – variabler Drehzahlbereich 30 – 90 Hz 2 einstufige Verdichter à 10 kW

Feste Leistung = $30 \text{ Hz} / 50 \text{ Hz} \times 10 \text{ kW} = 6 \text{ kW}$ Variable Leistung = $60 \text{ Hz} / 50 \text{ Hz} \times 10 \text{ kW} = 12 \text{ kW}$

Die Leistungskurve sieht wie folgt aus:

Da der variable Teil der Leistung des drehzahlgeregelten Verdichters größer ist als die nachfolgenden Verdichterstufen, gibt es keine "Löcher" in der Leistungskurve.

- 1 Der drehzahlgeregelte Verdichter wird zugeschaltet, wenn der Leistungsbedarf die Startdrehzahlleistung erreicht hat.
- Die Drehzahl des drehzahlgeregelten Verdichters wird gesteigert, bis bei einer Leistung von 18 kW die Höchstdrehzahl erreicht ist.
- Der Einstufenverdichter C2 mit 10 kW wird zugeschaltet, und die Drehzahl von C1 wird reduziert, sodass sie einer Leistung von 8 kW (40 Hz) entspricht.
- 4) Die Drehzahl des drehzahlgeregelten Verdichters wird gesteigert, bis bei Höchstdrehzahl eine Gesamtleistung von 28 kW erreicht ist.
- Der Einstufenverdichter C3 mit 10 kW wird zugeschaltet, und die Drehzahl von C1 wird reduziert, sodass sie einer Leistung von 8 kW (40 Hz) entspricht.
- 6) Die Drehzahl des drehzahlgeregelten Verdichters wird gesteigert, bis bei Höchstdrehzahl eine Gesamtleistung von 38 kW erreicht ist.
- Bei der Leistungssenkung werden die Einstufenverdichter abgeschaltet, wenn die Geschwindigkeit von C1 den Mindestwert erreicht hat.


b) Variabler Teil der Leistung kleiner als nachfolgende Verdichterstufen:

Wenn der variable Teil der Leistung des drehzahlgeregelten Verdichters kleiner ist als die nachfolgenden Verdichter, kommt es zu "Löchern" in der Leistungskurve.

Beispiel:

1 Drehzahlgeregelter Verdichter mit einer Nennleistung von 20 kW bei 50 Hz – variabler Drehzahlbereich 25 – 50 Hz 2 einstufige Verdichter à 20 kW Feste Leistung = 25 Hz / 50 Hz \times 20 kW = 10 kW Variable Leistung = 25 Hz / 50 Hz \times 20 kW = 10 kW

Die Leistungskurve sieht wie folgt aus:

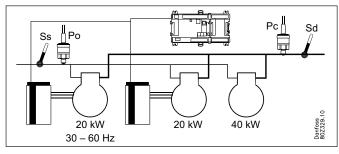
Da der variable Teil der Leistung des drehzahlgeregelten Verdichters kleiner ist als die nachfolgenden Verdichterstufen, entstehen "Löcher" in der Leistungskurve, die durch die variable Leistung nicht ausgeglichen werden können.

- Der drehzahlgeregelte Verdichter wird zugeschaltet, wenn der Leistungsbedarf die Startdrehzahlleistung erreicht hat.
- 2) Die Drehzahl des drehzahlgeregelten Verdichters wird gesteigert, bis bei einer Leistung von 20 kW die Höchstdrehzahl erreicht ist.
- 3) Der drehzahlgeregelte Verdichter behält die Höchstdrehzahl bei, bis der Leistungsbedarf auf 30 kW ansteigt.
- 4) Der Einstufenverdichter C2 mit 20 kW wird zugeschaltet, und die Drehzahl von C1 wird auf den Mindestwert reduziert, sodass sie einer Leistung von 10 kW (25 Hz) entspricht. Gesamtleistung = 30 kW.
- 5) Die Drehzahl des drehzahlgeregelten Verdichters wird gesteigert, bis bei Höchstdrehzahl eine Gesamtleistung von 40 kW erreicht ist.
- Der drehzahlgeregelte Verdichter behält die Höchstdrehzahl bei, bis der Leistungsbedarf auf 50 kW ansteigt.
- 7) Der Einstufenverdichter C3 mit 20 kW wird zugeschaltet, und die Drehzahl von C1 wird auf den Mindestwert reduziert, sodass sie einer Leistung von 10 kW (25 Hz) entspricht. Gesamtleistung = 50 kW.
- 8) Die Drehzahl des drehzahlgeregelten Verdichters wird gesteigert, bis bei Höchstdrehzahl eine Gesamtleistung von 60 kW erreicht ist.
- 9) Bei der Leistungssenkung werden die Einstufenverdichter abgeschaltet, wenn die Geschwindigkeit von C1 den Mindestwert erreicht hat.

Zwei drehzahlgeregelte Verdichter

Der Regler ist in der Lage, die Drehzahlregelung auf zwei Verdichter gleicher oder unterschiedlicher Größe anzuwenden. Die Verdichter lassen sich je nach gewünschtem Schaltprinzip mit einstufigen Verdichtern gleicher oder unterschiedlicher Größe kombinieren.

Allgemeines zur Handhabung:

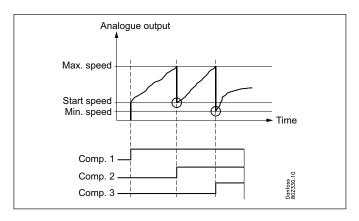

Allgemein gilt für den Betrieb der beiden drehzahlgeregelten Verdichter das gleiche Prinzip wie für einen drehzahlgeregelten Verdichter. Der Vorteil beim Einsatz zweier drehzahlgeregelter Verdichter liegt darin, dass man eine sehr geringe Leistung erreichen kann, was bei geringen Belastungen günstig ist. Ferner steht ein sehr großer, variabler Regelungsbereich zur Verfügung.

Verdichter 1 und 2 haben je einen eigenen Relaisausgang für Start/Stopp separater Frequenzumrichter (z. B. Modell VLT).

Beide Frequenzumrichter benutzen dasselbe analoge Ausgangssignal AO, das an die analogen Signaleingänge der Frequenzumrichter weitergeleitet wird. (Sie können allerdings so konfiguriert werden, dass sie mit separaten Signalen arbeiten.) Das vom Relais ausgehende Signal startet und stoppt den Frequenzumrichter, und das analoge Signal gibt die Drehzahl an.

Damit diese Regelungsmethode angewandt werden kann, müssen beide Verdichter denselben Frequenzbereich aufweisen.

Drehzahlgeregelte Verdichter werden stets als erste gestartet und als letzte gestoppt.



Zuschaltung

Der erste drehzahlgeregelte Verdichter wird gestartet, wenn der Leistungsbedarf der festgelegten Einstellung entspricht. Dies ist die "Startdrehzahl". (Der Relaisausgang wechselt zu EIN, und dem analogen Ausgang wird eine Spannung zugeführt, die der betreffenden Drehzahl entspricht.) Aufgabe des Frequenzumrichters ist es nun, die Drehzahl auf die "Startdrehzahl" zu bringen.

Jetzt wird die Leistungsstufe zugeschaltet, und die gewünschte Leistung wird vom Regler bestimmt.

Die Startdrehzahl muss immer so hoch angesetzt werden, dass beim Anfahren schnell eine gute Schmierung des Verdichters erzielt wird. Beim zyklischen Schaltprinzip wird der nachfolgende, drehzahlgeregelte Verdichter zugeschaltet, wenn der erste Verdichter mit höchster Drehzahl läuft und die gewünschte Leistung einen Wert erreicht hat, der ein Einschalten des nächsten drehzahlgeregelten Verdichters (mit Startdrehzahl) erlaubt. Anschließend werden beide Verdichter zusammen zugeschaltet und laufen parallel. Die nachfolgenden einstufigen Verdichter werden entsprechend der vorgegebenen Schaltprinzipien zu- und abgeschaltet.

Regelung – sinkende Leistung

Die drenzahlgeregelten Verdichter sind immer die letzten Verdichter, die noch in Betrieb sind.

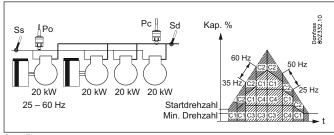
Fällt der Leistungsbedarf bei zyklischem Betrieb unter die "Mindestdrehzahl" für beide Verdichter ab, wird der drehzahlgeregelte Verdichter mit den meisten Betriebsstunden abgeschaltet. Ferner wird die Drehzahl des letzten drehzahlgeregelten Verdichters erhöht, sodass die Leistung um einen Wert erhöht wird, welcher der soeben abgeschalteten Verdichterstufe entspricht.

Abschaltung

Der letzte drehzahlgeregelte Verdichter wird abgeschaltet, wenn die "Mindestdrehzahl" erreicht ist und der Leistungsbedarf (gewünschte Leistung) unter 1 % gesunken ist (siehe jedoch auch Abschnitt über die Pump-down-Funktion).

Zeitschaltbegrenzung und Sicherheitsabschaltungen Zeitschaltbegrenzungen und Sicherheitsabschaltungen bei drehzahlgeregelten Verdichtern richten sich nach den allgemeinen Vorschriften der einzelnen Schaltprinzipien.

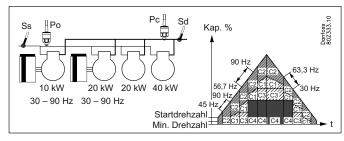
Nachfolgend einige kurze Beschreibungen und Beispiele für den Betrieb der beiden drehzahlgeregelten Verdichter bei den einzelnen Schaltprinzipien. Eine detaillierte Beschreibung ist im Anhang am Ende des Kapitels nachzulesen.


Zyklusbetrieb

Bei zyklischem Betrieb weisen beide drehzahlgeregelten Verdichter dieselbe Größe auf, und es erfolgt ein Betriebszeitausgleich zwischen den Verdichtern nach dem Prinzip "First in First Out" (FIFO). Der Verdichter mit den wenigsten Betriebsstunden startet als erster. Der nachfolgende drehzahlgeregelte Verdichter wird zugeschaltet, wenn der erste Verdichter mit höchster Drehzahl läuft und die gewünschte Leistung einen Wert erreicht hat, der ein Einschalten des nächsten drehzahlgeregelten Verdichters (mit Startdrehzahl) erlaubt. Danach werden beide Verdichter zusammen zugeschaltet und laufen parallel. Um einen Betriebsstundenausgleich zu gewährleisten, werden die nachfolgenden einstufigen Verdichter nach dem Prinzip "First In First Out" zu- und abgeschaltet.

Beispiel:

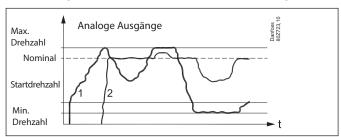
- Zwei drehzahlgeregelte Verdichter mit einer Nennleistung von 20 kW und einem Frequenzbereich von 25 – 60 Hz
- Zwei einstufige Verdichter mit jeweils 20 kW


Best-Fit

Beim "Best-Fit"-Betrieb können die drehzahlgeregelten Verdichter unterschiedliche Größen haben. Sie werden so betrieben, dass die bestmögliche Leistungsanpassung gewährleistet ist. Der kleinste Verdichter wird zuerst gestartet, dann wird der erste ab- und der zweite zugeschaltet. Schließlich werden beide Verdichter zusammen zugeschaltet und laufen im Parallelbetrieb.

Die nachfolgenden einstufigen Verdichter werden stets nach dem "Best-Fit"-Schaltprinzip behandelt.

Beispiel:


- Zwei drehzahlgeregelte Verdichter mit einer Nennleistung von 10 kW bzw. 20 kW
- Frequenzbereich 25 bis 60 Hz
- · Zwei einstufige Verdichter mit 20 bzw. 40 kW

Zwei unabhängige drehzahlgeregelte Verdichter

Wenn die beiden drehzahlgeregelten Verdichter asynchron geregelt werden sollen, müssen beide über ein eigenes analoges Spannungssignal verfügen.

Der Regler schaltet zunächst einen der drehzahlgeregelten Verdichter ein. Wenn mehr Leistung erforderlich ist, wird der andere drehzahlgeregelte Verdichter eingeschaltet. Danach werden die Einzelverdichter zugeschaltet.

Der erste Verdichter wird mit maximaler Drehzahl betrieben. Dann wird der zweite Verdichter aktiviert und mit Nenndrehzahl betrieben. Er behält diese Drehzahl bei. Zur gleichen Zeit wird die Drehzahl des ersten Verdichters reduziert, sodass die Leistung ausgeglichen ist. Der erste Verdichter reagiert nun auf alle Laständerungen. Wenn der erste Verdichter die maximale Drehzahl erreicht, wird auch die Drehzahl des zweiten Verdichters erhöht.

Wenn der erste Verdichter die minimale Drehzahl erreicht, behält er diese bei. Der zweite Verdichter reagiert dann auf Laständerungen unterhalb seiner Nenndrehzahl.

Insgesamt werden die Gesamtbetriebsstunden der beiden Verdichter so abgestimmt, dass beide gleich viele Stunden eingeschaltet sind.

5.2.3 Verdichter-Zeitschaltuhren

Zeitverzögerungen bei Zu- und Abschaltungen

Um den Verdichtermotor vor häufigen Wiederanläufen zu schützen, lassen sich drei Zeitverzögerungen einlegen:

- Eine Mindestdauer ab Verdichterstart, die vergehen muss, bevor er erneut gestartet werden kann.
- Eine Mindesteinschaltdauer, die ein Verdichter in Betrieb sein muss, bevor er wieder gestoppt werden kann.
- Eine Mindestabschaltdauer, die ab Stopp eines Verdichters vergehen muss, bevor er erneut gestartet werden kann.

Bei Zu- und Abschaltungen von Entlastungen kommen die Zeitverzögerungen nicht zur Anwendung.

Timer

Die Betriebsstunden eines Verdichtermotors werden laufend erfasst. Abgelesen werden können:

- Betriebsdauer der letzten 24 Stunden
- Gesamte Betriebsdauer seit der letzten Nullstellung des Zählers

Ausgleich von Betriebsstunden

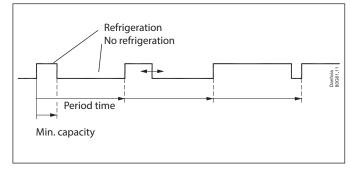
Die Betriebsstunden werden auch im Feld "Ausgleichszeit" summiert. Beim zyklischen Betrieb wird dieses Feld zum Ausgleichen der Betriebsstunden verwendet.

Schaltungszähler

Die Anzahl der Relaisschaltungen wird laufend erfasst. Hier wird die Anzahl der Ein-Perioden ausgewiesen:

- Anzahl der letzten 24 Stunden
- · Gesamte Anzahl seit der letzten Nullstellung des Zählers

5.2.4 Verdichter mit variabler Leistung


Digitaler Scrollverdichter

Die Leistung wird als "PWM per" durch die Anzahl der Perioden geteilt. 100 % Leistung wird erbracht, wenn während der gesamten Periode gekühlt wird.

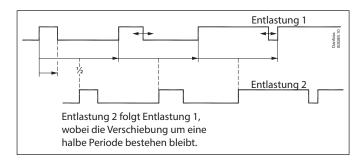
Innerhalb der Periode erfordert das Bypassventil eine Ausschaltzeit, eine Einschaltzeit ist ebenfalls gestattet. Wenn das Ventil eingeschaltet ist, findet "keine Kühlung" statt.

Der Regler selbst berechnet die erforderliche Leistung und passt sie dann entsprechend der Zuschaltung des Bypassventils an.

Wenn eine niedrige Leistung benötigt wird, damit die Kühlung nicht unter 10 % sinkt, wird ein Grenzwert eingerichtet. Grund hierfür ist die Tatsache, dass der Verdichter sich selbst kühlen kann. Der Wert kann bei Bedarf weiter erhöht werden.

Copeland Stream-Verdichter

Das PWM-Signal kann auch dazu verwendet werden, um einen Stream-Verdichter mit einem Entlastungsventil (Stream 4) oder einen Verdichter mit zwei Entlastungsventilen (Stream 6) zu regeln.


Stream 4: Die Verdichterleistung wird zu bis zu 50 % auf ein Relais geleitet, die restlichen 50 bis 100 % auf das Entlastungsventil.

Stream 6: Die Verdichterleistung wird zu bis zu 33 % auf ein Relais geleitet, die restlichen 33 bis 100 % auf die Entlastungsventile.

Bitzer CRII Ecoline

CRII 4: Das Pulssignal kann auch dazu verwendet werden, einen CRII-Verdichter mit zwei Entlastungsventilen zu regeln (4-Zylinder-Version).

Die Verdichterleistung kann in Abhängigkeit von der Pulsierung der Entlastungsventile zwischen 10 und 100 % geregelt werden. Das Verdichter-Startsignal wird an einen Relaisausgang angeschlossen, und die Entlastungsventile sind mit Solid-State-Ausgängen verbunden, z. B. DO1 und DO2.

CRII 6: Das Pulssignal kann auch dazu verwendet werden, einen CRII-Verdichter mit drei Entlastungsventilen zu regeln (6-Zylinder-Version).

Das Verdichter-Startsignal wird an einen Relaisausgang angeschlossen.

Zwei der Entlastungsventile werden mit Solid-State-Ausgängen verbunden, z. B. DO1 und DO2. Der dritte wird an einen Relaisausgang angeschlossen.

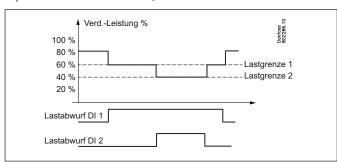
Die Verdichterleistung kann in Abhängigkeit von der Pulsierung der Entlastungsventile zwischen 10 und 67 % geregelt werden. Danach sorgt das Relais für die Schaltung der dritten Entlastung. Wenn das Relais AUS ist, wird die Leistung zwischen 33 und 100 % geregelt.

Individuelle Sd-Überwachung

Bei der Regelung mit Überwachung der Sd-Werte wird die Leistung eines der drei Verdichtertypen gesteigert, wenn sich die Temperatur dem Sd-Grenzwert nähert. Dies ermöglicht eine bessere Kühlung des entlasteten Verdichters.

5.2.5 Lastabwurf

Bei einigen Anlagen ist es wünschenswert, dass sich die Leistung des zugeschalteten Verdichters begrenzen lässt, sodass die elektrische Gesamtlast beim Laden zeitweise begrenzt werden kann. (Der IT-Kreis ist nicht direkt betroffen.)


Diese Begrenzung kann auf folgende Weise aktiviert werden:

- Über ein Signal vom Netzwerk
- Über ein Signal an einem DI-Eingang + ein Signal über das Netzwerk
- · Über ein Signal an zwei DI-Eingängen + ein Signal über das Netzwerk

Das Signal über das Netzwerk führt zur gleichen Funktion wie der Signaleingang an DI 1.

Jedem Digitaleingang ist ein Grenzwert für die maximal zulässige zugeschaltete Verdichterleistung zugeordnet, sodass die Leistungsbegrenzung in zwei Stufen ausgeführt werden kann.

Bei Aktivierung eines Digitaleingangs wird die maximal zulässige Verdichterleistung auf die eingestellte Grenze beschränkt. Wenn demnach die aktuelle Verdichterleistung bei Aktivierung des Digitaleingangs über dieser Grenze liegt, wird so viel Verdichterleistung abgeschaltet, dass der eingestellte maximale Grenzwert für den betreffenden Digitaleingang eingehalten oder unterschritten wird. Der Schwellwert kann nicht niedriger eingestellt werden als der niedrigste Kapazitätsschritt des Verdichters/"Startdrehzahl".

Wenn beide Lastabwurfsignale aktiv sind, gilt für die Leistung der niedrigste Grenzwert.

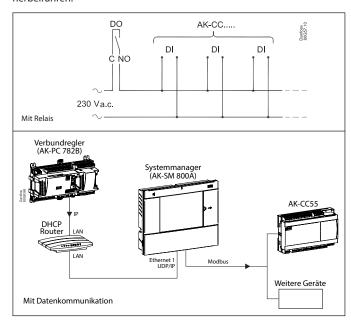
Max. Zeit

Eine Höchstdauer mit geringer Verdichterleistung kann eingestellt werden. Nach Ablauf der Periode schaltet das System auf normale Regelung um, bis der Saugdruck wieder zur Verfügung steht. Lastabwurf ist dann gestattet.

Übersteuerung des Lastabwurfs

Um zu vermeiden, dass Lastabwurf zu Temperaturproblemen für das Kühlgut führt, wird eine Übersteuerungsfunktion eingesetzt.

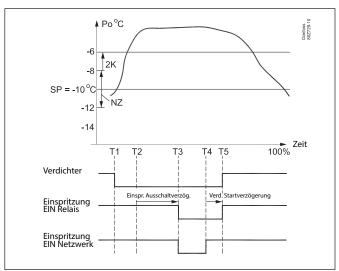
Hierbei wird eine Übersteuerungsgrenze für den Saugdruck und eine Verzögerungszeit für jeden Digitaleingang eingestellt.


Wenn der Saugdruck unter Lastabwurf die eingestellte PO-Übersteuerungsgrenze überschreitet und die damit verbundenen Verzögerungszeiten für die beiden digitalen Eingänge abgelaufen sind, werden die Lastabwurf-Signale übersteuert, sodass die Verdichterleistung erhöht werden kann, bis der Saugdruck wieder unter dem normalen Referenzwert liegt. Danach kann Lastabwurf wieder aktiviert werden.

Alarm:

Wenn ein digitaler Lastabwurf-Eingang aktiviert ist, wird ein Alarmsignal erzeugt, um darauf hinzuweisen, dass die normale Regelung außer Kraft ist. Dieser Alarm kann unterdrückt werden, wenn er nicht gewünscht wird.

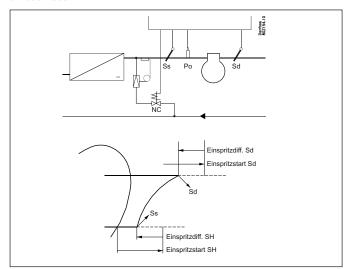
5.2.6 Injection ON


Die elektronischen Expansionsventile in den Kühlmöbeln sind zu schließen, wenn keiner der Verdichter gestartet werden kann. Dadurch werden die Verdampfer nicht mit Flüssigkeit gefüllt, die sonst beim Starten der Regelung in einen Verdichter weitergeleitet werden würde. Für diese Funktion kann eines der Relais in der Verdichtersteuerung benutzt werden, oder die Funktion lässt sich mittels Datenkommunikation herbeiführen.

Die Funktion wird von folgendem Ereignisverlauf ausgehend beschrieben:

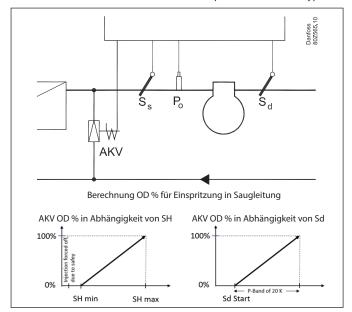
- T1) Der letzte Verdichter wird abgeschaltet.
- T2) Der Saugdruck ist auf einen Wert entsprechend Po-Sollwert $+ \frac{1}{2}$ NZ + 2 K gestiegen, doch wegen Wiederanlauf-Zeitschaltuhr oder Sicherheitsabschaltung kann kein Verdichter starten.
- T3) Die Zeitverzögerung "Injection OFF delay" läuft ab und die Einspritzventile werden über Relais- oder Netzwerksignal zwangsweise geschlossen.
- T4) Der erste Verdichter ist jetzt startbereit. Das Zwangsschließsignal über das Netzwerk wird jetzt aufgehoben.
- T5) Die Verdichter-Startverzögerung ("Comp. start delay") läuft ab und das Zwangsschließsignal über den Relaiskontakt wird aufgehoben. Gleichzeitig wird dem ersten Verdichter der Start erlaubt.

Das Zwangsschließsignal wird vor dem Start des ersten Verdichters deshalb über das Netzwerk aufgehoben, weil die Verteilung des Signals auf alle Möbelregler über das Netzwerk Zeit in Anspruch nimmt.



5.2.7 Flüssigkeitseinspritzung in gemeinsame Saugleitung

Die Druckgastemperatur lässt sich mittels Flüssigkeitseinspritzung in die Saugleitung kontrollieren (nicht IT Kreis).


Mit einem thermostatischen Expansionsventil in Serie mit einem Magnetventil vorzunehmen. Das Magnetventil ist an den Regler anzuschließen.

Die Steuerung kann auf zwei Arten ausgeführt werden:

- Die Steuerung der Flüssigkeitseinspritzung erfolgt ausschließlich auf Basis der Überhitzung in der Saugleitung. Hierfür werden zwei Werte eingestellt – ein Startwert und eine Differenz, bei der die Einspritzung wieder stoppt.
- 2. Die Flüssigkeitseinspritzung wird sowohl anhand der Überhitzung (wie oben beschrieben) als auch der Druckrohrtemperatur Sd gesteuert. Hierfür werden vier Werte eingestellt die beiden oben bereits erwähnten sowie zwei auf die Sd-Funktion bezogene Werte, ein Startwert und eine Differenz. Die Flüssigkeitseinspritzung beginnt, wenn beide Startwerte überschritten werden, und wird wieder gestoppt, wenn nur eine der beiden Funktionen abgeschaltet wird.

Direkt mithilfe eines elektrisch betriebenen Expansionsventils des Typs AKV

Hierbei werden vier Werte eingestellt – ein Startwert für die Sd-Temperatur, Mindest- und Höchstwerte für die Überhitzung und eine Periodendauer für das AKV-Ventil.

Der tatsächlich verwendete Öffnungsgrad (OD) der

Flüssigkeitseinspritzung entspricht dem höheren der beiden Werte oben (siehe Abb. oben).

Die Breite des P-Bands der Sd-Steuerung ist fest codiert auf 20 K und kann nicht geändert werden.

Wenn alle Verdichter gestoppt wurden, wird auch das Ventil geschlossen.

Als Sicherheitsfunktion wird das AKV-Ventil in jedem Fall geschlossen, sobald die Überhitzung SH unter 8 K fällt, um die Verdichter davor zu schützen, dass Flüssigkeit in die Ansaugöffnungen gerät.

Das PWM-Signal des AKV-Ventils entstammt einem der vier Solid-State-Ausgänge des Reglers.

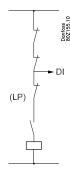
Zeitverzögerung

Es kann eine Zeitverzögerung eingestellt werden, mit der für eine Verzögerung der Einspritzung während des Anfahrens gesorgt wird. The pulse width modulating signal for the AKV valve shall be taken from one of the controller's four solid state outputs.

Time delay

A time delay can be set which ensures that the injection is delayed with the set value after start-up of the first compressor.

5.2.8 Sicherheitsfunktionen


Signal von der Sicherheitsautomatik des Verdichters

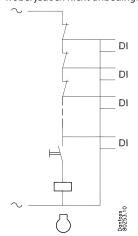
Der Regler kann den Zustand der Sicherheitskreise aller Verdichter überwachen. Das Signal wird direkt vom Sicherheitskreis übernommen und mit einem Eingang verbunden.

(Der Sicherheitskreis muss den Verdichter unabhängig vom Regler stoppen können.)

Wird der Sicherheitskreis unterbrochen, schaltet der Regler alle Ausgangsrelais des betreffenden Verdichters ab und gibt Alarm. Die Regelung wird mit den übrigen Verdichtern fortgesetzt.

Allgemeiner Sicherheitskreis

Kommt im Sicherheitskreis ein Niederdruckthermostat zum Einsatz,


ist er an letzter Stelle im Kreis zu platzieren. Er darf die DI-Signale nicht unterbrechen. (Es besteht das Risiko, dass sich die Regelung festfährt und nicht wieder in Gang kommt.) Dies gilt auch für das nachfolgende Beispiel.

Wenn ein Alarm benötigt wird, der auch den Niederdruckthermostat überwacht, kann ein "allgemeiner Alarm" definiert werden (ein Alarm, der die Regelung nicht beeinflusst).

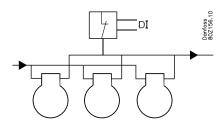
Siehe den folgenden Abschnitt "Allgemeine Überwachungsfunktionen".

Erweiterter Sicherheitskreis

Anstatt einer allgemeinen Überwachung des Sicherheitskreises kann diese Funktion erweitert werden. Damit wird die Abgabe einer konkreten Alarmmeldung möglich, die Informationen darüber vermittelt, welcher Teil des Sicherheitskreises ausgefallen ist. Der Sicherheitskreis ist in gezeigter Reihenfolge aufzubauen, wobei jedoch nicht unbedingt alle Elemente anzuwenden sind.

Öldruckschutz Überspannungsschutz

Motortemperaturschutz


Druckgastemperaturschutz

Hei & gas druck schutz

Gemeinsamer Sicherheitskreis

Es kann auch ein gemeinsames Sicherheitssignal für die gesamte Sauggruppe empfangen werden. Alle Verdichter schalten ab, wenn das Sicherheitssignal unterbrochen wird.

Die Funktion darf nicht an einen externen Hauptschalter angeschlossen werden.

Zeitverzögerungen bei Sicherheitsabschaltung:

In Verbindung mit der Sicherheitsüberwachung eines Verdichters können zwei Verzögerungszeiten definiert werden:

Abschaltverzögerungszeit: Verzögerungszeit nach Ausgabe eines Signals vom Sicherheitskreis, bis das Verdichter-Relais abgeschaltet und Alarm gegeben wird (diese Verzögerungszeit gilt für alle Sicherheitseingänge des betreffenden Verdichters gleichermaßen).

Sicherheitszeit für den Neustart: Mindestzeit, in der ein Verdichter nach einer Sicherheitsabschaltung im Normbereich sein muss, bevor er erneut gestartet werden darf.

Überhitzungsüberwachung

Diese Funktion ist eine Alarmfunktion, die laufend Messungen von Saugdruck P0 und Sauggastemperatur Ss erhält. Wird eine Überhitzung festgestellt, die niedriger oder höher als der eingestellte Wert ist, wird nach Ablauf der Zeitverzögerung Alarm gegeben.

Überwachung der maximalen Druckgastemperatur (Sd)

Gemeinsame Sd-Überwachung

Die Funktion sorgt für die allmähliche Abschaltung von Verdichterstufen, falls die Druckgastemperatur höher als zulässig ist. Die Abschaltgrenze lässt sich im Bereich 0 bis +195 °C festlegen.

Die Funktion wird ab einer Unterschreitung des eingestellten Werts um 10 K gestartet. An diesem Punkt wird die gesamte Verflüssigerleistung zugeschaltet. Gleichzeitig werden 25 % der Verdichterleistung (mindestens eine Stufe) abgeschaltet. Dieser Vorgang wird alle 30 Sekunden wiederholt. Die Alarmfunktion wird aktiviert.

Erhöht sich die Temperatur bis auf den eingestellten Grenzwert, werden sofort alle Verdichterstufen abgeschaltet.

Der Alarm wird wieder aufgehoben und die Wiedereinschaltung von Verdichterstufen ist zulässig, sobald folgende Bedingungen erfüllt sind:

- die Temperatur ist auf 10 K unter den Grenzwert gesunken
- die Zeitverzögerung vor Wiederanlauf ist abgelaufen (siehe weiter unten) Die normale Verflüssigerregelung wird wieder zugelassen, sobald die Temperatur auf 10 K unter den Grenzwert gesunken ist.

Individuelle Sd-Überwachung

Der betroffene Verdichter wird getrennt, wenn die Temperatur den Schwellenwert übersteigt.

- Der Kolbenverdichter wird wieder verbunden, sobald die Temperatur um 10 K gesunken ist.
- Der Schraubenverdichter wird wieder verbunden, sobald die Temperatur um 20 K gesunken ist.
- Die Leistung der Verdichter mit variabler Leistung wird erhöht, wenn sich die Temperatur dem Grenzwert nähert. Wenn der Verdichter abgeschaltet wurde, wird er erst wieder verbunden, nachdem die Temperatur um 10 K gesunken ist.

Werden auch vom integrierten NTC-Sensor Signale empfangen, liegt der Trennwert dieser Temperatur immer bei 130 °C und der Wiederverbindungswert bei 120 °C.

Überwachung des min. Saugdrucks (P0)

Die Funktion sorgt für sofortige Abschaltung aller Verdichterstufen, falls der Saugdruck niedriger als zulässig ist. Die Abschaltgrenze lässt sich im Bereich -120 bis +30 °C festlegen. Der Saugdruck wird mit dem Druckmessumformer P0 gemessen.

Bei Abschaltung wird die Alarmfunktion aktiviert:

Der Alarm wird wieder aufgehoben und die Wiedereinschaltung von Verdichterstufen ist zulässig, sobald folgende Bedingungen erfüllt sind:

- der Druck (Temperatur) ist über den Abschaltwert angestiegen
- die Zeitverzögerung vor Wiederanlauf ist abgelaufen (siehe unten)

Überwachung des max. Verflüssigerdrucks (Pc)

Die Funktion sorgt für die Zuschaltung aller Verflüssigerstufen und die allmähliche Abschaltung von Verdichterstufen, falls der Verflüssigerdruck höher als zulässig ist. Die Abschaltgrenze ist in Bar einzustellen. Der Verflüssigerdruck wird mit dem Druckmessumformer Pc_gemessen.

Die Funktion wird ab einer Unterschreitung des eingestellten Werts um 3 K wirksam. An diesem Punkt wird die gesamte Verflüssigerleistung zugeschaltet. Gleichzeitig werden 25 % der Verdichterleistung (mindestens eine Stufe) abgeschaltet. Dieser Vorgang wird alle 30 Sekunden wiederholt. Die Alarmfunktion wird aktiviert.

Erreicht die Temperatur (der Druck) den eingestellten Grenzwert, geschieht Folgendes:

- alle Verdichterstufen werden sofort abgeschaltet
- die Verflüssigerleistung bleibt zugeschaltet

Der Alarm wird wieder aufgehoben und die Wiedereinschaltung von Verdichterstufen ist zulässig, sobald folgende Bedingungen erfüllt sind:

- die Temperatur (der Druck) ist auf 3 K unter den Grenzwert gesunken
- die Zeitverzögerung vor Wiederanlauf ist abgelaufen

Verzögerung von Pc Max-Alarmen

Für die Mitteilung "Pc Max Alarm" kann eine Verzögerung eingestellt werden. Die Verdichterabschaltung durch den Regler wird fortgesetzt, lediglich die Alarmübermittlung wird verzögert.

Die Verzögerung ist bei Kaskadenanlagen nützlich, bei denen der maximale Pc-Grenzwert für die Abschaltung von Verdichtern im Niederdruckkreis verwendet wird, wenn die Verdichter im Hochdruckkreis nicht gestartet wurden.

Zeitverzögerung

Es gibt eine gemeinsame Zeitverzögerung für die Überwachung der maximalen Druckgastemperatur und des Mindestsaugdrucks. Nach einer Abschaltung kann die Regelung erst nach Ablauf der Zeitverzögerung wieder gestartet werden.

Die Zeitverzögerung beginnt, wenn die Sd-Temperatur wieder auf 10 K unter den Grenzwert gesunken ist oder P0 wieder über den P0-Mindestwert angestiegen ist.

Alarm bei zu hohem Saugdruck

Es können Alarmgrenzwerte eingestellt werden, die bei zu hohem Saugdruck wirksam werden. Ein Alarm wird übermittelt, sobald die zugehörige Zeitverzögerung abgelaufen ist. Die Regelung wird unverändert fortgesetzt.

Überwachung des max. Sammlerdrucks

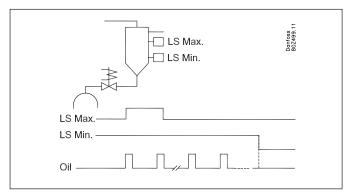
Wenn sich der Sammlerdruck dem Maximalwert nähert, werden die Verdichter wie unter "Überwachung des max. Verflüssigerdrucks" beschrieben abgeschaltet. Bei Überschreiten dieses Grenzwerts wird ein Alarm übermittelt.

5.3 Ölmanagement

Prinzip

Der Regler kann den Druck in einem Ölsammler regeln und die Evakuierung von zwei Ölabscheidern gewährleisten. Die Evakuierung erfolgt mithilfe mehrerer Impulse (z. B. 1 Sekunde aktiv, gefolgt von einer Pause von 1 Minute).

Die Systemregelung ist durch Signale von folgenden Komponenten möglich:


- Füllstandschalter an Ölabscheider
- Druckmessumformer an Ölsammler

Bei ausgeschaltetem Hauptschalter sind alle Ölventile geschlossen. \\

Beispiele für Ölkreisläufe.

Regelungsprinzip für das Entleeren des Ölabscheiders in den Sammler

Der Ölstand im Abscheider kann mit einem oder zwei Niveauschaltern geregelt werden. Das Öl wird in den Ölsammler über ein getaktetes Magnetventil abgelassen, das in zwei unterschiedlichen, benutzerdefinierten Taktsequenzen betrieben werden kann.

Systeme mit einem Niveauschalter:

Vollständige Reihenfolge:

Wenn der Niveauschalter Öl registriert, wird das Öl während der Betriebszeiten in den Sammler abgeführt. Die Impulslänge, die Periodendauer zwischen den Impulsen und die Anzahl der Impulse werden vom Benutzer festgelegt.

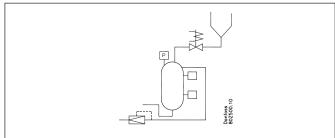
Auf dem Niveau:

Hierbei wird eine Impulsfolge bei Aktivierung des Schalters gestartet, die jedoch sofort gestoppt wird, sobald der Ölstand unter das Niveau sinkt. In beiden Fällen gilt: Wenn der Niveauschalter nach Ablauf der Laufzeiten weiterhin Öl registriert, wird ein Alarm über hohen Ölstand im Abscheider ausgelöst.

Systeme mit zwei Niveauschaltern:

Hier wird die Impulsfolge vom Schalter für hohen Füllstand gestartet und vom Schalter für niedrigen Füllstand gestoppt.

Wenn der Niveauschalter für hohen Füllstand nach Ablauf der Impulsfolge weiterhin Öl registriert, wird ein Alarm über hohen Ölstand im Abscheider ausgelöst.


Registriert der Niveauschalter für niedrigen Füllstand nach Ablauf der Impulsfolge weiterhin Öl, wird ein Alarm über verbleibendes Öl im Abscheider ausgelöst.

Zudem wird ein Signalstörungsalarm ausgegeben, wenn zwar der Füllstandschalter für hohen Füllstand Öl registriert, nicht aber der Schalter für niedrigen Füllstand.

Wird keiner der beiden Niveauschalter aktiviert, wird in der eingestellten Alarmverzögerung "No oil sep. alarm delay" der Alarm "Öl nicht abgeschied." ausgegeben.

Prinzip der Druckregelung im Sammler

Pressostat

Prinzip

Im Falle einer mangelnden Druckdifferenz zum Füllen der MT-Verdichter wird das Magnetventil in benutzerdefinierten Impulsen geöffnet und der Druck im Ölabscheider abgebaut. Die Impulslänge und Periodendauer zwischen den Impulsen werden vom System bestimmt und sind identisch mit den für den Ölabscheider eingestellten Werten.

Regelung nach Druck

Sobald der Druckmessumformer den erforderlichen Druck registriert, werden die Impulse gestoppt.

Aufbau nach Zeit

Hier bestimmt der Regler anhand einer Timer-Funktion den Druckaufbau im Sammler. Es gibt keine Regelung.

Differenzdruck

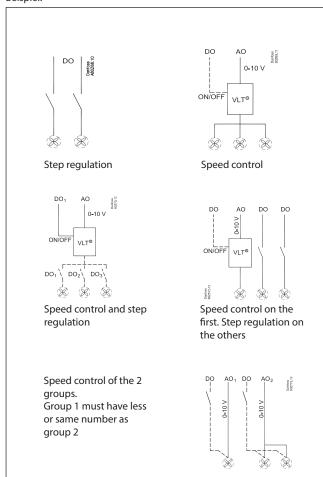
Hierbei erfolgt die Regelung auf Grundlage des Sammlerdrucks und des Drucks im CO₂-Sammler (Prec). Der Regler führt die Regelung in Übereinstimmung mit dem gewünschten Differenzdruck aus.

Überwachung

Der Sammler kann Signale für hohen und niedrigen Füllstand empfangen. Diese Signale werden nur zur Überwachung und zur Alarmausgabe genutzt.

5.4 Verflüssiger/Gaskühler

Prinzip


Der Verflüssiger in einem transkritischen CO_z -System wird auch Gaskühler genannt. Im Unterschied zu einem FKW-System wird hier die Unterkühlung nicht von einem Verflüssiger geregelt, sondern mithilfe des Hochdruckventils Vhp.

Die Gaskühlerregelung muss die Temperatur auf der Druckseite des Gaskühlers so regeln, dass hier immer der niedrigstmögliche Wert vorliegt und dass der Energieverbrauch der Lüfter auf ein Mindestmaß begrenzt wird. Allerdings darf der Wert nicht so niedrig sein, dass der Sammlerdruck nicht aufrechterhalten werden kann.

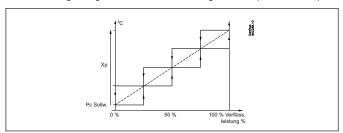
Die Leistungsregelung von Verflüssigern (Gaskühlern) lässt sich mittels Stufenschaltung oder Drehzahlregelung der Lüfter vornehmen.

- EC-Motoren
- Ein analoges Ausgangssignal wird verwendet, um die Lüfterleistung zwischen 0 und dem Maximalwert zu regeln.
- Stufenschaltung
 - Der Regler kann bis zu 8 Verflüssigerstufen steuern, die sequenziell zu- und abgeschaltet werden.
- Drehzahlregelung
 - Die analoge Ausgangsspannung ist an eine Drehzahlregelung angeschlossen. Alle Lüfter lassen sich anschließend von 0 bis max. Leistung regeln. Ist ein EIN-/AUS-Signal erforderlich, lässt sich dieses über einen Relaisausgang bereitstellen. Die Regelung kann nach folgenden Prinzipien erfolgen:
 - Alle Lüfter werden mit gleicher Drehzahl betrieben
 - Nur die erforderliche Lüfteranzahl wird zugeschaltet.
- Kombination von Drehzahlregelung und Stufenschaltung.

Beispiel:

5.4.1 Leistungsregelung des Verflüssigers

Die zugeschaltete Verflüssigerleistung wird anhand des aktuellen Werts des Verflüssigerdrucks und in Abhängigkeit vom Druckanstieg bzw. -abfall gesteuert. Die Regelung erfolgt mittels PI-Regler, der sich jedoch in einen P-Regler ändern lässt, falls die Anlagenkonzeption dies erfordert.


PI-Regelung

Die Zuschaltung von Leistung durch den Regler erfolgt so, dass die Abweichung zwischen aktuellem Verflüssigerdruck und Sollwert so klein wie möglich bleibt.

P-Regelung

Die Zuschaltung von Leistung durch den Regler hängt von der Abweichung zwischen dem aktuellen Verflüssigerdruck und dessen Sollwert ab.

Der Proportionalbereich Xp gibt die Abweichung an. Die Einstellung erfolgt mithilfe des Verstärkungsfaktors Kp (XP = 100/Kp).

Auswahl des Regelfühlers

Der Leistungsregler kann die Regelung mithilfe eines Temperaturfühlers (Sgc) ausführen, der am Ausgang des Gaskühlers angebracht ist. Alternativ kann die Regelung auch anhand der Mediumtemperatur (S7) erfolgen.

Leistungs- Regelfühler = Sgc / S7

Wird dem Regelfühler S7 zugewiesen, dient Pc jedoch weiterhin als Sicherheit bei hohem Verflüssigungsdruck, d. h. der Verdichter wird bei zu hohem Verflüssigungsdruck abgeschaltet.

2 Sgc-Fühler:

Wenn die Option "2 Sgc-Fühler" ausgewählt ist, wird der Fühler mit dem höchsten Wert für die Regelung verwendet. Es wird ein Alarm ausgegeben, wenn die Differenz zwischen den beiden Fühlerwerten größer ist als der vom Benutzer eingestellte Parameter "Delta vor Alarm".

Behebung von Fühlerstörungen an Sgc und S7:

Liegt eine Störung des Fühlers vor, schalten die Lüfter in den Notbetrieb. Die Lüfter werden dann gemäß der Verdichterleistung und, falls montiert, Sc3 geregelt.

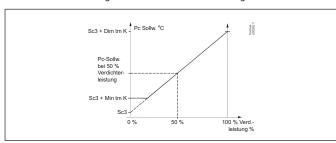
5.4.2 Sollwert für Gaskühlertemperatur

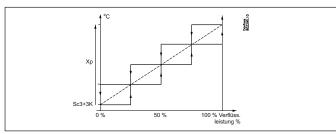
Der Regelsollwert lässt sich auf zwei Arten definieren. Entweder als fest eingestellter Sollwert oder als Sollwert, der mit der Außentemperatur variiert

Hinweis: Wenn S7 als Regelfühler gewählt wird, muss der Wärmeaustausch zwischen externer Temperatur und Sole berücksichtigt werden. In diesem Fall wird empfohlen, den für die Pgc-Referenzberechnung verwendeten Wert für die Unterkühlung um 2 K zu erhöhen (siehe Abschnitt HD-Regelung).

Fester Sollwert

Der Sollwert des Verflüssigerdrucks ist in °C einzustellen.


Variabler Sollwert (empfohlen)


Diese Funktion ermöglicht eine Schwankung des Verflüssigungsdrucksollwerts innerhalb eines festgelegten Bereichs. Der Sollwert ändert sich mit der Außentemperatur und der angeschlossenen Verdichterleistung.

Durch Kombination eines variablen Verflüssigerdrucks mit elektronischen Expansionsventilen lassen sich erhebliche Energieeinsparungen erzielen. Die elektronischen Expansionsventile erlauben die Absenkung des Verflüssigerdrucks in Abhängigkeit von der Außentemperatur. Die Einsparung beim Energieverbrauch entspricht dabei in etwa 2 % pro Grad, um das die Temperatur gesenkt werden kann. Die gemessene Außentemperatur kann zudem vom Regler zur Optimierung des Regelalgorithmus verwendet werden. Die Funktion lässt sich mit einem variablen Kp-Wert vergleichen, der in Wärmeperioden höher und in Kälteperioden niedriger ist. Es gibt keine Einstellung.

Der Sollwert basiert auf:

- der Außentemperatur, gemessen mit dem Sc3-Fühler
- dem kleinsten möglichen Temperaturunterschied zwischen der Lufttemperatur und der Verflüssigungstemperatur bei 0 % Verdichterleistung
- der bemessenen Temperaturdifferenz des Verflüssigers zwischen Lufttemperatur und Verflüssigungstemperatur bei 100 % Verdichterleistung (Dim tmK)
- dem Ausmaß der zugeschalteten Verdichterleistung.

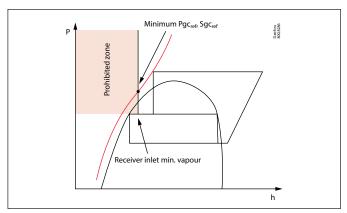
Der kleinste mögliche Temperaturunterschied (min tm) bei niedriger Last muss auf ca. 2 K eingestellt werden, da dadurch die Gefahr beseitigt wird, dass alle Lüfter in Betrieb sind, wenn kein Verdichter läuft. Es muss die bemessene Differenz (dim tm) bei maximaler Belastung (z. B. 4 K) eingestellt werden.

Anschließend ändert der Regler den Sollwert um einen Wert, der vom Ausmaß der zugeschalteten Verdichterleistung abhängt.

Der Bezugswert wird wie bei der PI-Regelung berechnet. Die Einstellung erfolgt mithilfe des Verstärkungsfaktors Kp (XP = 100/Kp).

Maximale Gaskühlertemperatur

Falls die Gaskühlertemperatur begrenzt werden muss, muss die relevante Höchsttemperatur eingestellt werden. Bei Erreichen dieses Grenzwerts wird die Lüfterdrehzahl auf maximale Drehzahl erhöht.


Adaptiver Mindestsollwert

Der Mindestsollwert wird adaptiv geregelt.

Der Sammler wird geregelt, indem Gas durch das Bypass-Vrec-Ventil geführt wird. Dringt kein Gas in den Sammler ein, wird dieses Ventil geschlossen und der Sammlerdruck wird nicht geregelt. Dadurch wird der Ausgang des Gaskühlers begrenzt.

Aus diesem Grund ist es möglich, einen Qualitätsschwellenwert für "Sammler Gas Anteil" festzulegen.

Die Regelung hält das Einlassniveau über diesem Grenzwert. Dies führt zu einem min. Sgc- und Pgc-Sollwert.

Spezielle Betriebsmodi für Verflüssigerlüfter

Eine Zwangssteuerung der Leistung ist möglich, wobei die normale Regelung außer Acht gelassen wird.

Während einer Zwangssteuerung werden die Sicherheitsfunktionen aufgehoben.

Zwangssteuerung durch Einstellung

Die Regelung wird auf manuellen Betrieb eingestellt.

Die Leistung wird in Prozent der geregelten Leistung eingestellt.

Zwangssteuerung über Relais

Erfolgt die Zwangssteuerung mittels an der Front eines Erweiterungsmoduls befindlichen Umschaltern, wird das von der Sicherheitsfunktion registriert, die versucht, eventuelle Überschreitungen zu korrigieren und Alarme zu senden. In dieser Situation kann der Regler jedoch die Relais nicht schalten.

Zwangsbetrieb durch hohen Sammlerdruck

Bei einem hohen Sammlerdruck werden die Verflüssigerlüfter im oberen P-Band des Sammlerdrucks aktiviert.

Verhalten der Lüfter bei ausgeschaltetem Verdichter:

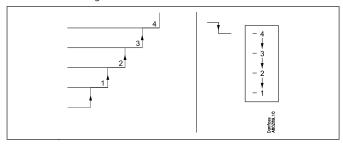
Wenn die NK- und PV-Verdichter ausgeschaltet sind, werden die Lüfter von 0 bis 100 % in einem Bereich von 5 bis 15 K über Sgc-Sollwert betrieben.

Lüfterdrehzahl über DI zwangssteuern

Bei Konfiguration und Aktivierung durch DI wird die vom Lüfter angeforderte Leistung zwangsweise eingeschaltet (abhängig von den Einstellungen):

Max. Drehzahl: Für den Lüfter wird die maximale Drehzahl zwangsweise eingeschaltet. (100 % für VSD-Lüftertyp oder "EC max." für EC-Lüfterart) Prop%CMP: Die Lüfterleistung wird linear von 30 % auf 100 % erhöht, basierend auf der höchsten Leistung zwischen NK- und PV-Verdichter.

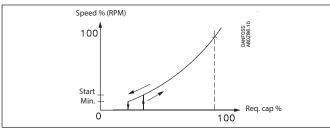
Die Sicherheitsfunktionen gelten während dieses zwangsgesteuerten Betriebs weiter, die Anforderungsleistung ist jedoch Null, wenn NKund PV-Verdichter ausgeschaltet sind, mit Ausnahme von Max. Pc/Sd.


Hinweis: Diese Funktion erhöht das Risiko des Zusammenbrechens des Sammlerdrucks, wenn die Flüssigkeit durch die Lüfterwirkung zu stark heruntergekühlt wird. Es ist nicht ratsam, diese Funktion bei kalter Witterung oder eingeschalteter Wärmerückgewinnung zu aktivieren.

5.4.3 Leistungsverteilung

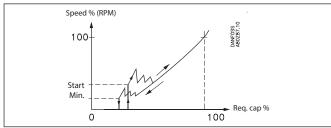
Stufenschaltung

Zu- und Abschaltung erfolgen sequenziell. Die zuletzt zugeschaltete Stufe wird zuerst abgeschaltet.

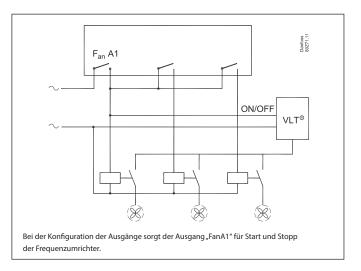


Drehzahlregelung

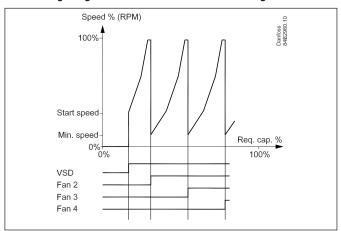
Bei Anwendung eines analogen Ausgangs lassen sich die Lüfter zwangssteuern, z. B. mittels Frequenzumrichter (Typ VLT) oder EC-Motor.


Gemeinsame Drehzahlregelung

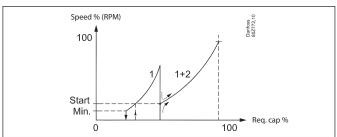
Die analoge Ausgangsspannung wird an einen Drehzahlregler angeschlossen. Alle Lüfter lassen sich anschließend von 0 bis max. Leistung regeln. Wenn für den Frequenzumrichter ein EIN-/AUS-Signal erforderlich ist, um die Lüfter völlig zum Stillstand bringen zu können, lässt sich ein Relaisausgang dafür festlegen.



Der Regler startet den Frequenzumrichter, sobald der Leistungsbedarf der eingestellten Startdrehzahl entspricht. Der Regler stoppt den Frequenzumrichter, sobald der Leistungsbedarf unter die eingestellte Mindestdrehzahl absinkt.


Drehzahlregelung + Stufenschaltung

Der Regler startet den Frequenzumrichter und den ersten Lüfter, sobald der Leistungsbedarf der eingestellten Startdrehzahl entspricht. Bei steigendem Leistungsbedarf schaltet der Regler weitere Lüfter zu und passt danach die Drehzahl an den neuen Betriebszustand an. Der Regler schaltet Lüfter ab, wenn der Leistungsbedarf unter die eingestellte Mindestdrehzahl absinkt.


Drehzahlregelung des ersten Lüfters + Stufenschaltung des Rests

Der Regler startet den Frequenzumrichter und steigert die Drehzahl des ersten Lüfters.

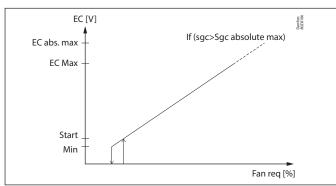
Wird zusätzliche Leistung benötigt, wird der nächste Lüfter zu dem Zeitpunkt zugeschaltet, an dem der erste Lüfter auf Mindestdrehzahl wechselt. Ab diesem Punkt erhöht der erste Lüfter die Drehzahl wieder usw.

Drehzahlregelung für in zwei Gruppen eingeteilte Lüfter

Bei niedriger Last wird nur Gruppe 1 eingeschaltet. Wenn sich die Last erhöht und ein für Gruppe 2 berechneter Startwert überschritten wird, wird Gruppe 2 eingeschaltet.

Wird Gruppe 2 zugeschaltet, läuft sie mit der gleichen Drehzahl wie Gruppe 1.

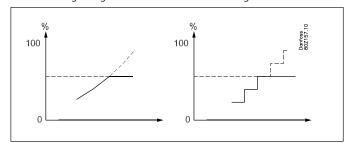
Die Anzahl der Lüfter in den beiden Gruppen kann gleich sein. Ansonsten muss Gruppe 1 kleiner sein.


EC-Motor

Das Spannungssignal zum EC-Motor wird durch die folgenden Einstellungen definiert:

EC, Min. (in der Regel 20 %, was bei einem 0-bis-10-Volt-Signal 2 V entspricht)

EC, Max. (in der Regel 80 %, was bei einem 0-bis-10-Volt-Signal 8 V entspricht)


EC, Absolutes Max. (in der Regel 100 %, was 10 V entspricht)

Wenn die Sgc-Temperatur die definierte "Absolute Sgc-Maximaltemperatur" überschreitet, kann die Ausgangsspannung auf den absoluten Maximalwert für EC erhöht werden.

Leistungsbegrenzung bei Nachtbetrieb

Diese Funktion dient zur Minimierung des Lüfterlärms. Sie wird hauptsächlich gemeinsam mit der Drehzahlregelung angewandt, ist aber auch bei der Stufenschaltung aktiv.
Die Einstellung erfolgt in Prozent der Maximalleistung.

Die Begrenzung bleibt unberücksichtigt, wenn die Sicherheitsfunktionen "Sd max." und "Pc max." in Funktion treten.

Statusbeschreibung Verflüssigerlüfterregelung

Hauptschalter : Hauptschalter AUS
AUS : Regelbetrieb AUS
Normal : Normale Regelung
Manuell : Regelbetrieb manuell

Begrenzt : Angeforderte Leistung wird durch den Nachtgrenzwert oder EC-Grenzwerte begrenzt

Pc/Sd Max. : Angeforderte Leistung wird erhöht, um max. Pc oder Sd zu vermeiden

Fühlerfehler: Fühlerfehler Regelung

Zwangsgesteuert durchDI: Die angeforderte Leistung des Lüfters wird

zwangsgesteuert, wenn "Lüfterdrehzahl über DI zwangssteuern" aktiviert ist

5.5 Verflüssigerschaltungen

Schaltung von Verflüssigerstufen

Bei der Zu- und Abschaltung von Verflüssigerstufen entstehen außer der in der PI/P-Regelung liegenden Verzögerung keine Zeitverzögerungen.

Timer

Die Betriebsstunden eines Lüftermotors werden laufend erfasst. Abgelesen werden können:

- Betriebsdauer der letzten 24 Stunden
- Gesamte Betriebsdauer seit der letzten Nullstellung des Zählers

Schaltungszähler

Die Anzahl der Relaisschaltungen wird laufend erfasst. Hier wird die Anzahl der EIN-Perioden ausgewiesen:

- Anzahl der letzten 24 Stunden
- Gesamte Anzahl seit der letzten Nullstellung des Zählers

Überprüfen der Lüfter

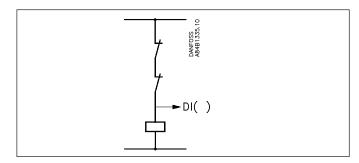
Die letzten Lüfter werden im Winter meistens nicht aktiviert. Um sicherzustellen, dass die Lüfter funktionsfähig sind, wird alle 24 Stunden ein Test ausgeführt, bei dem überprüft wird, ob alle Relais funktionieren. Die nicht verwendeten Relais werden dabei im Abstand von jeweils 5 Minuten einzeln 5 Sekunden lang aktiviert (ab 13:00 Uhr). Bei "Startdrehzahl" erfolgt eine Drehzahlregelung.

Modulierendes Gaskühler-Bypassventil (V3gc)

Es kann vorkommen, dass die Austrittstemperatur des Gaskühlers zu niedrig ist, obwohl die Lüfter ausgeschaltet sind. Dies ist normalerweise bei sehr kalter Witterung der Fall oder wenn der Sollwert während der Wärmerückgewinnung erhöht wird. Dann kann mit dem modulierenden Bypassventil die Temperatur erhöht werden.

Der Gaskühler kann sich leicht mit kalter Flüssigkeit füllen, wenn er vollständig umgangen wird. Dies kann durch einen maximalen Grenzwert am Öffnungsgrad des Gaskühler-Bypassventils verhindert werden.

5.6 Sicherheitsfunktionen für Verflüssiger

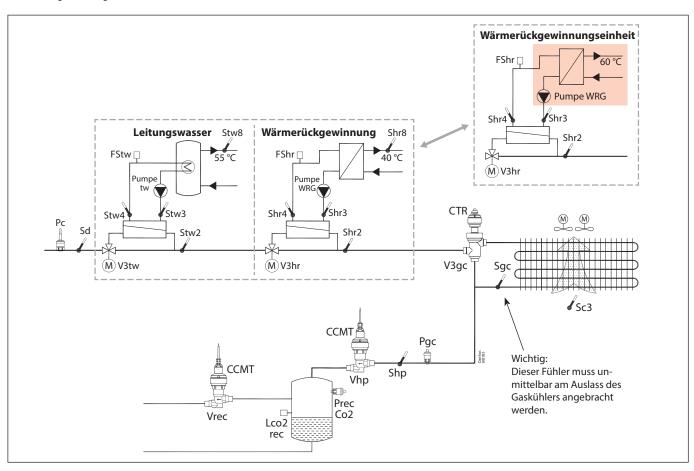

Signal von der Sicherheitsautomatik des Lüfters und Frequenzumrichters

Der Regler kann Signale über den Zustand des Sicherheitskreises jeder Verflüssigerstufe verarbeiten.

Das Signal wird direkt vom Sicherheitskreis übernommen und mit einem "DI"-Eingang verbunden.

Wird der Sicherheitskreis unterbrochen, löst der Regler Alarm aus. Es wird mit den übrigen Stufen weitergeregelt.

Der zugehörige Relaisausgang wird nicht abgeschaltet. Grund hierfür ist die Tatsache, dass Lüfter oft paarweise, aber mit einem Sicherheitskreis, angeschlossen werden. Bei einem Fehler an einem Lüfter arbeitet der andere weiter.


5.7 Transkritisches CO₂-System und Wärmerückgewinnung

Allgemeines

Bei CO₂-Systemen kann aufgrund des höheren Drucks und der höheren Temperatur Wärme für Warmwasser und Heizung zurückgewonnen werden. Die überschüssige Wärme wird mithilfe eines Gaskühlers gewonnen. Die Regelung erfolgt während transkritischer und subkritischer Zustände, und der Regler beeinflusst den Gasdruck/Verflüssigungsdruck so, dass das System den optimalen COP-Wert dann erreicht, wenn die zurückgewonnene Wärme berücksichtigt wird.

Die Regelung des Wärmerückgewinnungskreislaufs erfolgt unter Berücksichtigung des Kühlsystems. Wenn die Regelung betrieblichen Einschränkungen unterliegt, hat das Kühlsystem Vorrang vor der Wärmerückgewinnung. Die beiden Wärmerückgewinnungskreisläufe können unabhängig voneinander betrachtet werden – auch in Bezug auf das Kühlsystem. Zuerst entnimmt der Kreislauf für Warmwasser die benötigte Energie. Die verbleibende Energie kann dann durch den nächsten Kreislauf verwendet werden. Auch dieser entnimmt die benötigte Energie. Wenn überschüssige Energie verbleibt, wird diese über den Gaskühler abgeleitet.

Es muss eine Kühlanforderung vorliegen, damit die Wärmerückgewinnung versorgt werden kann.

Info

Unter normalen Betriebsbedingungen liegt die Temperatur an Sd zwischen 60 und 70 °C – je nachdem, ob Winter oder Sommer ist. Wenn die "Wärmerückgewinnungsfunktion" den Verflüssigungsdruck erhöhen soll, kann die Temperatur auf 90 °C oder mehr ansteigen.

Der Sc3-Fühler sollte so positioniert werden, dass er die Lufteinlasstemperatur am Gaskühler misst. Wenn eine zu hohe Temperatur gemessen wird, wird der COP-Wert des Systems beeinträchtigt.

Das Sgc-Signal muss stabil sein. Wenn dies nicht mithilfe eines Systemsensors erfolgen kann, muss möglicherweise ein Tauchrohrfühler verwendet werden.

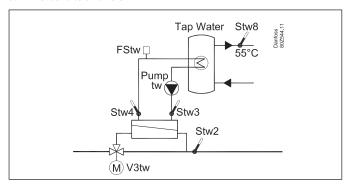
Wichtig: der Trennverstärker

Wenn Signale aus verschiedenen Regelungen empfangen werden, z. B. aus der Wärmerückgewinnung für einen der Eingänge, muss ein galvanisch getrenntes Modul eingefügt werden. Es gibt Sicherheitsfunktionen für die einzelnen Regelungsfunktionen, zum Beispiel:

- Sieden an S3, S4 und S8
- Eine S3-Temperatur muss niedriger sein als die Gastemperatur, die in den Wärmetauscher geschickt werden kann. Wenn die S3-Temperatur höher ist, ist der Kreislauf nicht angeschlossen.

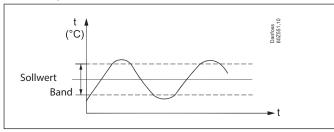
Die Pumpe bleibt kurze Zeit vor und nach dem Anschluss der Gasventile in Betrieb. Es kann bis zu 2 Minuten dauern, bis das Gasventil die Position wechselt.

Hinweis: Vorstehendes Diagramm zeigt vier verschiedene Kombinationen der Wärmerückgewinnungseinheit. Der Benutzer kann Folgendes auswählen:


- 1. "Brauchwarmwasser"
- 2. "Wärmerückgewinnung"
- 3. "Brauchwarmwasser" und "Wärmerückgewinnung"
- 4. "Wärmerückgewinnungseinheit"

5.7.1 Wärmerückgewinnung – Brauchwarmwasser-Kreislauf

Anwendung

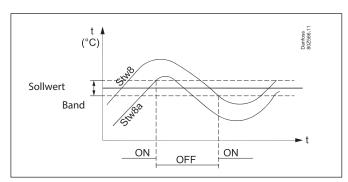

Diese Regelung ermöglicht, Heißgas für die Erwärmung eines Sammlerbehälters zu liefern.

Sollwert

Die Regelung erfolgt für eine Leitungswassertemperatur von üblicherweise 55°C. Der Wert ist einstellbar. Ein Temperaturfühler Stw8 ist im Warmwassersammler angebracht. Die Temperatur wird in einem Bereich um den eingestellten Wert herum gehalten.

Wenn Stw8 oder Stw4 als Regelfühler ausgewählt wurde, kann der Referenzwert auf Grundlage eines externen 0–10-V-Signals verändert werden. Bei 0 V findet keine Veränderung statt. 10 V führt zu einer Veränderung des Sollwerts.

Ventil - V3tw


Wenn eine Erwärmung des Leitungswassers erforderlich ist, wechselt das Gasventil und leitet das Gas durch den Wärmetauscher. Wenn die Temperatur den Sollwert um mehr als die Hälfte des Bereichs überschreitet, wird das Gas außen um den Wärmetauscher herum geleitet.

Regelung

Die Regelung erfolgt durch Öffnen des V3tw-Ventils und Einschalten der Pumpenregelung, wenn der gewählte Regelungsfühler unter dem Sollwert minus der Hälfte des Bereichs liegt.

Die Regelung kann anhand eines der folgenden Prinzipien durchgeführt werden:

- Nur Stw8. Die Temperatur wird mithilfe eines Ein-/Aus-Thermostats geregelt. Die Pumpe kann ein- und ausgeschaltet oder variabel geregelt werden.
- Nur Stw4. Die Temperatur wird mithilfe eines Ein-/Aus-Thermostats geregelt. Die Pumpe muss variabel geregelt werden.
- Stw4 Stw3. Hier wird "Delta T" über den Wärmetauscher zur Regelung verwendet. Die Pumpe muss hierbei mit einer variablen Drehzahl geregelt werden. Wenn die Stw8-Temperatur erreicht wurde, wird das Gas außen um den Wärmetauscher herum geleitet. (Mit einem Delta-T-Regler kann der Referenzwert durch ein externes Signal nicht verändert werden.)
- Stw8 und Stw8a. Hier erfolgt die Regelung mithilfe von zwei Temperaturfühlern im Sammler. Stw8 befindet sich oben und Stw8a weiter unten.

Die Pumpe wird über Ein/Aus geregelt und wird angeschlossen, wenn Stw8 unterhalb des Sollwerts plus der Hälfte der Differenz liegt. Sie wird getrennt, wenn Stw8a oberhalb des Sollwerts plus der Hälfte der Differenz liegt.

Die Pumpe – Pumpe tw

Es empfiehlt sich, eine Pumpe mit Drehzahlregelung zu verwenden, damit die Regelung fließend erfolgt und keine großen Schwankungen des Verflüssigungsdrucks angezeigt werden. Um zu verhindern, dass die Pumpe nach längerer Inaktivität verstopft, aktivieren Sie die Funktion "Pumpentest" (standardmäßig deaktiviert). Der Regler lässt die Pumpe nach 24 Stunden Inaktivität 30 Sekunden lang mit minimaler Drehzahl laufen.

Durchflussschalter – FStw

Aus Sicherheitsgründen sollte für einen möglichen Ausfall der Pumpe ein Durchflussschalter installiert werden. Der Regler trennt dann den gesamten Rückgewinnungskreislauf.

Fühler – Stw2, Stw3, Stw4 und Stw8

Alle Fühler müssen aus Sicherheitsgründen installiert werden: Stw2: Dem Regler muss die Temperatur des Gases bekannt sein, das zur Verflüssigung geschickt wird.

Stw3: Kältezugang Wärmetauscher. Zur Temperaturregelung verwendet. Stw4: Warmauslass Wärmetauscher. Zur Temperaturregelung verwendet. Stw8: Sammlertemperatur in Relation zum Sollwert.

5.7.2 Wärmerückgewinnung – Kreislauf für Wärmerückgewinnung zum Heizen

Anwendung

Die Regelung kann anhand folgender drei Prinzipien erfolgen, wenn der Kreislauf Wärme anfordert:

- 1. Basisregelung (ohne HD-Verschiebg)
- 2. Verschiebung des Verflüssigungsdrucks (HD-Verschiebg)
- 3. Verschiebung und Regelung des Gaskühlers und der Pumpe (max. hr)

Generell gilt für alle drei Prinzipien:

Ventil - V3hr

Wenn der Kreislauf erwärmt werden soll, schaltet das Gasventil um und leitet das Gas durch den Wärmeübertrager.

Wenn die Temperatur den Sollwert um mehr als die Hälfte des Bereichs überschreitet, wird das Gas außen um den Wärmeübertrager herum geleitet und die Pumpe wird nach 180 Sekunden abgeschaltet.

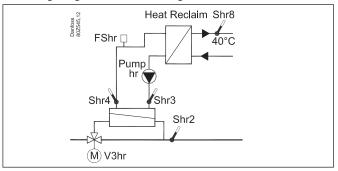
Pumpe - Pumpe WRG

Empfohlen wird die Verwendung einer Pumpe mit Drehzahlregelung, damit die Regelung fließend erfolgt und keine großen Schwankungen im Verflüssigungsdruck entstehen. Um zu verhindern, dass die Pumpe nach längerer Inaktivität verstopft, aktivieren Sie die Funktion "Pumpentest" (standardmäßig deaktiviert). Der Regler lässt die Pumpe nach 24 Stunden Inaktivität 30 Sekunden lang mit minimaler Drehzahl laufen.

Durchflussschalter – FShr

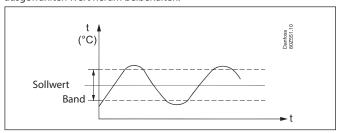
Aus Sicherheitsgründen sollte für einen möglichen Ausfall der Pumpe ein Durchflussschalter installiert werden. Der Regler trennt dann den gesamten Rückgewinnungskreislauf.

Fühler – Shr2, Shr3, Shr4 und Shr8 (Stw2/Sd)


Alle Fühler müssen aus Sicherheitsgründen installiert werden: Shr2: Dem Regler muss die Temperatur des Gases bekannt sein, das zur Verflüssigung geschickt wird.

Shr3: Kälteeingang Wärmeübertrager. Zur Temperaturregelung verwendet. Shr4: Wärmeausgang Wärmeübertrager. Zur Temperaturregelung verwendet.

Shr8: Sammlertemperatur in Relation zum Sollwert.


Stw2 oder Sd: Der Regelung muss die Temperatur des Gases bekannt sein, das in den Wärmeübertrager geleitet wird.

1. Basisregelung (ohne HD-Verschiebg)

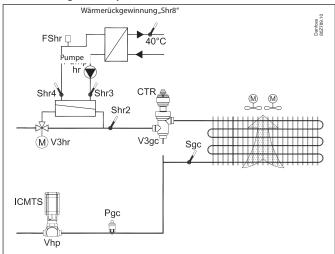
Sollwert

Die Regelung erfolgt mit einer Sammlertemperatur von z.B. 40°C. Der Wert ist einstellbar. Im Sammler ist ein Temperaturfühler Shr8 installiert. Die Temperatur wird innerhalb eines bestimmten Bereichs um den ausgewählten Wert herum beibehalten.

Wenn die Temperatur den Sollwert um mehr als die Hälfte des Bereichs überschreitet, wird das Gas außen um den Wärmeübertrager herum geleitet.

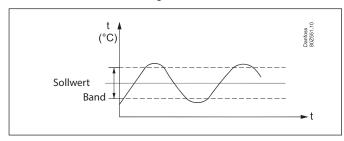
Der Sollwert kann mithilfe eines externen 0–10-V-Signals verändert werden. Bei 0 V findet keine Veränderung statt. 10 V führt zu einer Veränderung des Sollwerts.

Regelung


Folgende Teile können als Regelfühler verwendet werden:

- Shr8
- Shr4
- Delta T über den Wärmeübertrager (Shr4–Shr3) von z. B. 4 K, aber weiterhin mit Shr8 als Sollwert.

Die Pumpe kann sowohl ein-/ausgeschaltet als auch variabel geregelt werden, wenn Shr8 als Regelfühler verwendet wird. Für eine Shr4- oder DeltaT-Regelung muss die Pumpe jedoch über eine Drehzahlregelung verfügen. Im regelbaren Betrieb hält die Pumpe an, wenn die Leistungsanforderung die ausgewählte Mindestdrehzahlkapazität der Pumpe unterschreitet.



2. Wärmerückgewinnungsmodus: HD-Verschiebg und Temperatursollwert

Sollwert

Die Regelung erfolgt mit einer Wärmeübertrager- oder Sammlertemperatur von z. B. 40 °C. Der Wert ist einstellbar. Im Sammler ist ein Temperaturfühler Shr8 installiert. Die Temperatur wird innerhalb eines bestimmten Bereichs um den ausgewählten Wert herum beibehalten.

Wenn die Temperatur den Sollwert um mehr als die Hälfte des Bereichs überschreitet, wird das Gas außen um den Wärmeübertrager herum geleitet.

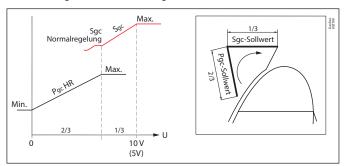
Der Sollwert kann mithilfe eines externen 0–10-V-Signals verändert werden. Bei 0 V findet keine Veränderung statt. 10 V führt zu einer Veränderung des Sollwerts.

Regelung

Die Regelung erfolgt durch Öffnen des V3tw-Ventils und Einschalten der Pumpenregelung, wenn der gewählte Regelfühler unter dem Sollwert minus der Hälfte des Bereichs liegt.

Folgende Teile können als Regelfühler verwendet werden:

- Shr8
- Shr4
- Delta T über den Wärmeübertrager (Shr4–Shr3) von z. B. 4 K, aber weiterhin mit Shr8 als Thermostatfühler.


Die Pumpe kann ein- und ausgeschaltet oder variabel geregelt werden. Für eine Shr4- oder DeltaT-Regelung **muss** die Pumpe über eine Drehzahlregelung verfügen. Im regelbaren Betrieb hält die Pumpe an, wenn die Leistungsanforderung die ausgewählte Mindestdrehzahlkapazität der Pumpe unterschreitet.

Das Ventil V3gc ist in dieser Regelung nicht enthalten. Das gesamte Gas fließt durch den Gaskühler.

Erhöhung von Verflüssigungsdruck und Temperatur

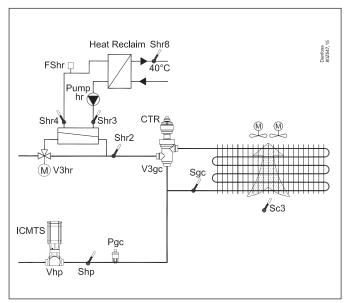
Wenn der ausgewählte Regelfühler unter dem Sollwert liegt und die Wärmerückgewinnung läuft, können der Gaskühler-Drucksollwert, Pgc ref, und der Gaskühler-Ausgangstemperatursollwert, Sgc ref, erhöht werden. Der Druck wird mit dem Druckmessumformer Pgc gemessen und durch das Ventil Vhp geregelt.

Wie schnell der Druck und die Temperatur ansteigen, wird durch eine Einstellung und ein analoges Spannungssignal festgelegt. Das Signal muss ein 0–10-V-Signal oder ein 0–5-V-Signal sein.

Bei Aktivierung der Wärmerückgewinnung (mit einem digitalen Signal) wird der Gaskühler-Drucksollwert auf "Pgc HR min" erhöht. Bei 2/3 des Signals (6,6 V) steigt der Drucksollwert auf die Einstellung "Pgc WRG max".

Unter 2/3 des Signals folgt "Sgc ref" der optimalen Kurve. Von 2/3 auf 3/3 des Signals steigt der Sgc-Temperatursollwert (Sgc ref) auf "Sgc max". Es können bis zu 5 Signale von externen Regelungen empfangen werden. Durch all diese Signale kann der Druck steigen. Der Regler verwendet das Signal, das die größte Verschiebung erfordert. Das angewendete Signal wird über einen bestimmten Zeitraum gefiltert. Die Länge des Zeitraums kann eingestellt werden.

Relaisausgang


Ein Relais kann reserviert werden, das zugeschaltet wird, wenn das empfangene Signal mehr als 10 Minuten lang 9,5 V (4,75 V) überschreitet. Das Relais wird definiert in der Funktion: "Zusätzliche Wärmeleistung".

Wichtig: der Trennverstärker

Wenn Signale aus verschiedenen Regelungen empfangen werden, z. B. aus der Wärmerückgewinnung für einen der Eingänge, muss ein galvanisch getrenntes Modul eingefügt werden.

3. Wärmerückgewinnungsmodus: Max. Wärmerückgewinnung

Sollwert

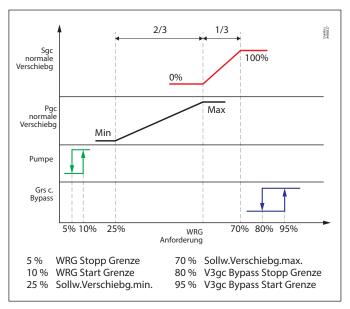
Im Modus "Max. Wärmerückgewinnung" stützt sich die Regelung allein auf die externe Wärmeanforderung (Verbraucheranforderung) an einem analogen Eingang und ein Startsignal an einem digitalen Eingang. Beachten Sie, dass keine aktive Thermostat-Regelung der Wärmerückgewinnung erfolgt.

Zur Vermeidung des Siedens im System wird die Wärmerückgewinnung gestoppt, sobald an einem der Fühler Shr3, Shr4 oder Shr8 die Temperatur 95 °C überschreitet.

Drehzahlregelung der Pumpe

Folgende Teile können als Regelfühler für die Drehzahlregelung der Pumpe verwendet werden:

- Shr8
- Shr4
- Delta T über Wärmeübertrager (Shr4–Shr3) von z. B. 4 K. (Mit einem Delta-T-Regler kann der Referenzwert durch ein externes Signal nicht verändert werden.)


Die Pumpendrehzahl wird anhand der Abweichung des Einstellwerts von der aktuellen Temperatur bestimmt (wobei einer der oben genannten Regelfühler verwendet wird).

Bei Einsatz einer Pumpe mit fester Drehzahl werden Start und Stopp der Pumpe anhand des Wärmeanforderungssignals gesteuert. Die Pumpendrehzahl wird abhängig vom Regelfühler geändert. Die Pumpe kann sich bei Bedarf ausschalten und HC wird umgangen.

Erhöhen des Verflüssigungsdrucks

Es können bis zu 5 Signale von externen Wärmeverbrauchern empfangen werden. Der Regler verwendet das Signal, das die höchste Kapazität erfordert. Das angewendete Signal wird über einen bestimmten Zeitraum gefiltert. Die Filterdauer kann eingestellt werden (Wärmeverbrauchsfilter). Ein externer Wärmeregler löst ein Signal zwischen 0 und 10 V (0–5 V) aus, welches der Regler zum Starten der folgenden Funktionen verwendet, damit die maximale Wärmerückgewinnung erreicht wird:

 Signal am DI-Eingang Wärmerückgewinnung wird empfangen (für die Funktionsaktivierung zwingend erforderlich) und der Referenzwert für den Druck Pgc wird auf "Pgc HR min" gesteigert, wenn das externe Signal über dem HR-Startgrenzwert liegt.

- Das externe Spannungssignal wird registriert (je höher der Wert, umso größer der Wärmebedarf). Das Signal wird vom Regler in 0–100 % Leistung umgewandelt und hat folgende Auswirkungen:
 - a. EIN/AUS-Regelung von Pumpe und Bypassventil V3hr Die Pumpe wird für den Betrieb freigegeben, wenn das Anforderungssignal den unter "HR Start Grenze" festgelegten Grenzwert erreicht hat und das Ventil V3hr zur Wärmerückgewinnung geöffnet wird. Das Ventil V3hr geht in den "Bypass", wenn der Wert "HR Stopp Grenze" erreicht ist, und die Pumpe wird nach 180 Sekunden gestoppt.
 - b. Druck- und Temperaturanstieg
 Der Druck wird mithilfe des Druckmessumformers Pgc gemessen und über das Hochdruckventil Vhp geregelt. Je nach Wärmeanforderung wird der Druckreferenzwert "Pgc HR ref" von "Pgc HR min" auf "Pgc HR max" erhöht. Nach Erreichen von "Pgc HR max" wird "Sgc ref" von "Sgc min" auf "Sgc max" erhöht. Die gesteigerte Gaskühlertemperatur hat eine niedrigere Lüfterdrehzahl zur Folge.

 (Der Regler berechnet den Sgc-Mindestwert basierend auf dem festgelegten Bezugswert für den Sammlerdruck.)
- c1. Wenn V3gc modulierend ist: Der Regler regelt die Lüfter und das Ventil, um die energieoptimierte Regelung aufrechtzuerhalten (Umgehung des Gaskühlers ist nur bei 0 % Lüfterleistung zulässig und umgekehrt). Shp ist der Regelfühler, wenn der Gaskühler umgangen wird.
- c2. V3gc funktioniert wie ein EIN/AUS-Ventil (siehe Abbildung): Die Lüfter werden ausgeschaltet und das Ventil V3gc leitet das Gas am Gaskühler vorbei. Wenn die WRG-Anforderung zwischen dem V3gc-Bypass-Abschaltgrenzwert und dem V3gc-Bypass-Startgrenzwert liegt, löst V3gc keine Umgehung aus, es sei denn, die Werte Shr2 und Sgc sind niedriger als "TC max WRG".

Im Bild "Wärmerückgewinnungsstatus" wird der aktuelle Regelstatus angezeigt.

Relaisausgang (zusätzlicher Wärmeausgang)

Ein Relais kann reserviert werden, das zugeschaltet wird, wenn das empfangene Signal mehr als 10 Minuten lang 9,5 V (4,75 V) überschreitet. Das Relais wird abgeschaltet, wenn das Signal 9,3 V (4,65 V) unterschreitet. Das Relais wird definiert in der Funktion: "Zusätzliche Wärmeleistung" und kann dann verwendet werden, um einen zusätzlichen Wärmepumpenverdampfer einzuschalten.

Bedingungen für den Start der Wärmerückgewinnung

Die folgenden Bedingungen müssen erfüllt sein, damit die Wärmerückgewinnungsfunktion gestartet werden kann:

- 1. Externe Wärmeanforderung über digitalen Eingang
- 2. Pumpenregelmodus ist auf "Auto" eingestellt
- 3. Mindestens ein NK-Verdichter muss wenigstens zwei Minuten lang in Betrieb sein
- "Sd NK" oder "Stw2" (bei aktiver Wärmerückgewinnung für Leitungswasser) muss über Shr3-Soletemperatur liegen Wenn "Regelsignal" = "Shr8" oder "Shr4", dann muss "Sd NK" höher sein als (Shr3 + +1 K)
 - Wenn "Regelsignal" = "Shr4–Shr3", dann muss "Sd" höher sein als (Shr3 + Delta T)
- 5. Einer oder mehrere der maßgeblichen Fühler sind defekt
- 6. Die Siedeschutzfunktion ist nicht aktiv

Wenn alle Bedingungen erfüllt sind, wird die folgende Startsequenz durchgeführt:

- 1. Die Pumpe wird gestartet (sofern noch nicht in Betrieb), wenn die Wärmeanforderung den Wert "HR Start Grenze" überschreitet
- 2. Der Durchflussschalter meldet "Durchfluss OK", sofern montiert
- 3. Das Bypassventil wechselt die Stellung und das Heißgas wird durch den Wärmeübertrager geleitet

Bedingungen für den Stopp der Wärmerückgewinnung

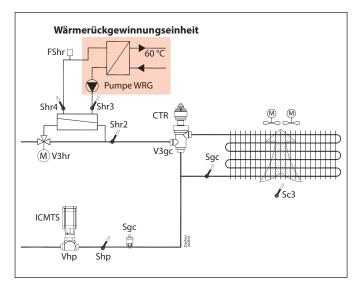
Sobald eine der folgenden Bedingungen eintritt, wird die Wärmerückgewinnung gestoppt:

- 1. Das externe Wärmeanforderungssignal am DI stoppt
- Das analoge Wärmeanforderungssignal unterschreitet den Wert "WRG Stopp Grenze" (Bedingung nur aktiv bei Wärmerückgewinnungstyp: Max. Wärmerückgewinnung).
- 3. Der Pumpenregelmodus wird auf AUS gestellt
- Letzter NK-Verdichter war länger angehalten als "Verzögerung WRG-Abschalt.

 – NK-Stopp"
- 5. "Sd NK" oder "Stw2" (bei aktiver Wärmerückgewinnung für Leitungswasser) ist im Vergleich zur Shr3-Soletemperatur zu niedrig.
 - Wenn "Regelsignal" = "Shr8" oder "Shr4", dann muss "Sd NK" höher sein als (Shr3 + +1 K)
 - Wenn "Regelsignal" = "Shr4–Shr3", dann muss "Sd" höher sein als (Shr3 + Delta T)
- 6. Der Wert "Shr2" liegt unter 10 °C
- 7. Die Siedeschutzfunktion ist aktiv
- 8. Einer oder mehrere der maßgeblichen Fühler sind defekt

Sobald eine der Bedingungen für den Wärmerückgewinnungsstopp eintritt, wird der folgende Ablauf eingeleitet:

- Das Dreiwegeventil V3hr wechselt die Stellung und leitet das Heißgas um. Bei Bedingung 4 wird der Wärmeübertrager sofort umgangen, sobald der letzte NK-Verdichter abschaltet.
- 2. Die Pumpe läuft noch 180 s lang weiter, um überschüssige Wärme im Wärmeübertrager abzuführen. Sollte innerhalb dieser 180 s eine erneute Wärmeanforderung eingehen, bleibt die Pumpe in Betrieb. Bei den Stoppbedingungen 4 und 5 läuft die Pumpe weiter, wenn dies von der Temperaturregelung gefordert wird.


Bei Erreichen einer Abschaltbedingung wird ein Herunterfahren ausgelöst und es kann mehrere Minuten dauern, bis die Wärmerückgewinnung wieder verfügbar ist.

Um dies zu verhindern, wird das V3hr-Ventil den Wärmeübertrager ohne Aktivierung eines Herunterfahrens unter folgenden Bedingungen umgehen:

- · NK-Verdichter wurde sofort angehalten
- Zu niedriger Prec erkannt (siehe "WRG deakt." im Sollwert-Manager)
- "Shr2" liegt unter 10 °C

5.7.3 Wärmerückgewinnung – Kreislauf für Danfoss Wärmerückgewinnungseinheit

Anwendung

Diese Regelung ermöglicht es, die Wärmerückgewinnung mit der Danfoss Wärmerückgewinnungseinheit (HRU) in einer ähnlichen Konfiguration wie im Modus "Max. Wärmerückgewinnung" für den Kreis "Wärmerückgewinnung" zu konfigurieren.

AK-PC 782B übernimmt keine Regelung der Wasserpumpe. Diese Komponente ist in dem dafür vorgesehenen HRU-Regler integriert.

Dies bedeutet, dass die Regelung auf einer externen Wärmeanforderung (Verbraucheranforderung) an einem Analogeingang als Prozentsatz der Spannung von 0–10 V basiert. Der Digitaleingang zum Verbundregler wird weiterhin benötigt, da er als Startsignal gilt und anzeigt, dass die Pumpe in der Danfoss Wärmerückgewinnungseinheit eingeschaltet ist.

Ventil - V3hr

Wenn der Kreislauf erwärmt werden soll, schaltet das Gasventil um und leitet das Gas durch den Wärmeübertrager. Dies basiert auf einer externen Wärmeanforderung.

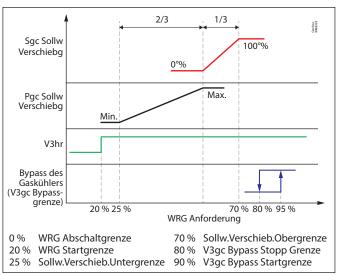
Durchflussschalter - FShr

Aus Sicherheitsgründen kann ein Strömungswächter eingebaut werden. Der Verbundregler trennt dann den gesamten Rückgewinnungskreislauf.

Sensoren – Shr2, Shr3, Shr4, Sd

Alle Fühler müssen aus Sicherheitsgründen installiert werden: Shr2: Dem Regler muss die Temperatur des Gases bekannt sein, das zur Verflüssigung geschickt wird.

Shr3: Kälteeingang Wärmeübertrager


Shr4: Wärmeausgang Wärmeübertrager

Sd: Dem Regler muss die Temperatur des Gases bekannt sein,

dass in den Wärmeübertrager geleitet wird.

Verbraucheranforderung:

Von einem externen Wärmeverbraucher kann nur ein einzelnes Signal empfangen werden. Der Regler verwendet dieses Signal, nachdem er es über einen bestimmten Zeitraum gefiltert hat. Der Filter wird durch den "Wärmeverbraucherfilter" angepasst. Um die Wärmerückgewinnungseinheit zu aktivieren und V3hr das Gas in den Wärmeübertrager leiten zu lassen, sollte es dann auf die Verbraucheranforderung reagieren. Das Signal vom integrierten HRU-Regler liegt zwischen 0 und 10 V und wird zum Starten der Wärmerückgewinnungseinheit verwendet. Liegt das Signal unter 20 %, startet der Verbund die HRU nicht. Liegt das Signal über 20 %, startet der Verbund und V3hr löst die Umgehung aus. Es wird ein weiteres Signal am Digitaleingang DI empfangen (obligatorisch, um die Funktion zu aktivieren). Dieses DI-Signal zeigt an, dass die Pumpe läuft. Die Wärmerückgewinnungseinheit ist eine einfache Version, da die Pumpenregelung vom Verbundregler nicht integriert ist und in der Danfoss-Wärmerückgewinnungseinheit erfolgt.

Anhebung von Verflüssigungsdruck und Temperatur

Bevor der Verbundregler die Einheit startet, überprüft er die Bedingungen von Shr4 und Sd NK. Über ein analoges Spannungssignal wird festgelegt, wie schnell Druck und Temperatur ansteigen sollen. Das Signal muss ein 0–10 V-Signal vom HRU-Regler sein.

Der Verbund reagiert auf die HRU-Anforderung, was sich entsprechend auf das Bypassventil zur Wärmerückgewinnung (V3hr), die Druck- und Temperaturanhebung und das Gaskühler-Bypassventil (V3gc) auswirkt. Siehe vorstehende Abbildung.

- Das Signal sollte über 20 % liegen, um die Umleitung des Gases in den Wärmeübertrager zu starten (mit V3hr), dann wird der Sollwert für den Druck Pgc auf "Pgc WRG min." angehoben.
- Das externe Spannungssignal wird registriert (je höher der Wert, umso größer der Wärmebedarf). Das Signal wird vom Regler in 0–100 % Leistung umgewandelt und hat folgende Auswirkungen:
 - a. EIN/AUS-Bypassventil V3hr Wenn die Pumpe für die neue Danfoss Wärmerückgewinnungseinheit (HRU) freigegeben wird und das Anforderungssignal den unter "HR Start Grenze" festgelegten Grenzwert erreicht hat, öffnet sich das Ventil V3hr zur Wärmerückgewinnung. Das Ventil V3hr geht in den "Bypass", wenn der Wert "WRG Abschaltgrenze" erreicht ist.
 - b. Druck- und Temperaturanstieg Der Druck wird mithilfe des Druckmessumformers Pgc gemessen und über das Hochdruckventil Vhp geregelt. Je nach Wärmeanforderung wird der Drucksollwert "Pgc WRG SW" bei 2/3 des Signals von "Pgc WRG min" auf "Pgc WRG max" erhöht. Nach Erreichen von "Pgc WRG max" wird von 2/3 bis 3/3 des Signals "Sgc SW" von "Sgc min" auf "Sgc max" erhöht. Die höhere Gaskühlertemperatur hat eine niedrigere Lüfterdrehzahl zur Folge. (Min. (Der Regler berechnet den Sgc-Mindestwert basierend auf dem festgelegten Bezugswert für den Sammlerdruck.)
- c1. V3gc moduliert: Der Regler regelt die Lüfter und das Ventil, um die energieoptimierte Regelung aufrechtzuerhalten (Umgehung des Gaskühlers ist nur bei 0 % Lüfterleistung zulässig und umgekehrt). Shp ist der Regelfühler, wenn der Gaskühler umgangen wird.
- c2. V3gc funktioniert wie ein EIN/AUS-Ventil (siehe Abbildung):
 Die Lüfter werden ausgeschaltet und das Ventil V3gc leitet das Gas
 am Gaskühler vorbei. Wenn die WRG-Anforderung zwischen dem
 V3gc-Bypass-Abschaltgrenzwert und dem V3gc-Bypass-Startgrenzwert
 liegt, löst V3gc keine Umgehung aus, es sei denn, die Werte Shr2
 und Sgc sind niedriger als "TC max WRG".
 Im Bild "Wärmerückgewinnungsstatus" wird der aktuelle Regelstatus

Im Bild "Wärmerückgewinnungsstatus" wird der aktuelle Regelstatus angezeigt.

Relaisausgang (zusätzlicher Ausgang zur Wärmeanforderung)

Es kann ein Relais reserviert werden, das sich einschaltet, wenn das empfangene Signal länger als 10 Minuten 9,5 V übersteigt. Das Relais wird abgeschaltet, wenn das Signal unter 9,3 V fällt. Das Relais wird in folgender Funktion definiert: "Zusätzliche Wärmeleistung". Es kann z. B. verwendet werden, um einen zusätzlichen Wärmepumpenverdampfer zuzuschalten.

Bedingungen für den Start der Wärmerückgewinnung

Die folgenden Bedingungen müssen erfüllt sein, damit die Wärmerückgewinnungsfunktion gestartet werden kann:

- 1. Externe Wärmeanforderung über digitalen Eingang
- 2. Pumpenregelmodus ist auf "Auto" eingestellt
- 3. Das analoge Wärmeanforderungssignal sollte über "20 %" liegen
- 4. Mindestens ein NK-Verdichter muss wenigstens zwei Minuten lang in Betrieb sein
- 5. "Sd NK" muss höher sein als Shr3 Soletemp.
- 6. Einer oder mehrere der maßgeblichen Fühler sind defekt
- 7. Die Siedeschutzfunktion ist nicht aktiv (Shr3 und Shr4)
- 8. Strömungswächter ist EIN (falls ausgewählt)

Wenn alle Bedingungen erfüllt sind, wird die folgende Startsequenz durchgeführt:

- 1. Der Strömungswächter meldet "Durchfluss OK", sofern montiert.
- 2. Das Bypassventil wechselt die Stellung und das Heißgas wird durch den Wärmeübertrager geleitet.

Bedingungen für den Stopp der Wärmerückgewinnung

Sobald eine der folgenden Bedingungen eintritt, wird die Wärmerückgewinnung abgeschaltet:

- 1. Das externe Wärmeanforderungssignal am DI stoppt
- 2. Das analoge Wärmeanforderungssignal sinkt unter "20 %"
- 3. Regelmodus wird von Hand auf "AUS" gestellt
- 4. Letzter NK-Verdichter war länger angehalten als "Verzögerung WRG-Abschalt.– NK-Stopp"
- 5. SdNK ist niedriger als (Shr3 Soletemp.)
- 6. "Shr2" liegt unter 10 °C
- 7. Die Siedeschutzfunktion ist aktiv
- 8. Der Strömungswächter hat länger als 180 s keinen Durchfluss festgestellt
- 9. Einer oder mehrere der maßgeblichen Fühler sind defekt

Sobald eine der Bedingungen für den Wärmerückgewinnungsstopp eintritt, wird der folgende Ablauf eingeleitet:

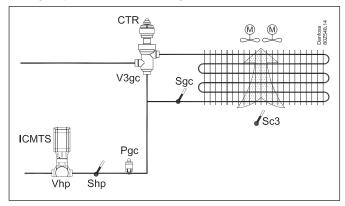
Das Dreiwegeventil V3hr wechselt die Stellung und leitet das Heißgas um. Bei Bedingung 4 wird der Wärmeübertrager sofort umgangen, sobald der letzte NK-Verdichter abschaltet.

 Das Dreiwegeventil V3hr wechselt die Stellung und leitet das Heißgas um. Bei Bedingung 4 wird der Wärmeübertrager sofort umgangen, sobald der letzte NK-Verdichter abschaltet.

Bei Erreichen einer Abschaltbedingung wird ein Herunterfahren ausgelöst und es kann mehrere Minuten dauern, bis die Wärmerückgewinnung wieder verfügbar ist.

Um dies zu verhindern, wird das V3hr-Ventil den Wärmeübertrager ohne Aktivierung eines Herunterfahrens unter folgenden Bedingungen umgehen:

- NK-Verdichter wurde sofort angehalten
- Zu niedriger Prec erkannt (siehe "WRG deakt." im Sollwert-Manager)
- "Shr2" liegt unter 10 °C



5.7.4 Kreisläufe zur Regelung des CO₂-Gasdrucks

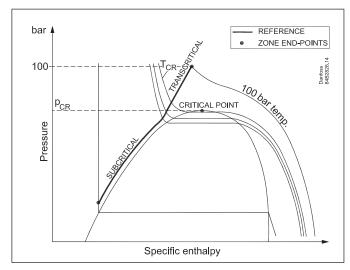
Anwendung

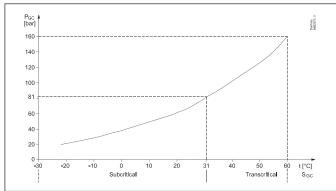
Der Regler steuert den Druck im Gaskühler (Verflüssiger), so dass das System den optimalen COP erreicht.

Der Regler optimiert immer in Richtung eines subkritischen Zustands.

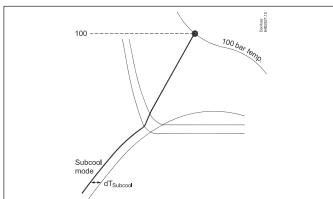
Der Druck im Gaskühler wird vom Ventil Vhp gesteuert. Anstelle eines ICMTS-Ventils kann ein Ejektor- oder CCMT-Ventil mit Schrittmotor verwendet werden.

Die Regelung benötigt Input sowohl von einem Druckmessumformer Pgc als auch von einem Temperaturfühler Sgc. Beide müssen im Austritt unmittelbar nach dem Gaskühler montiert werden. Wenn der Gaskühler umgangen werden kann, **muss** ein Shp-Fühler installiert werden. Wenn der Shp-Fühler eine zu hohe Temperatur erfasst, wird das Kältemittel durch den Gaskühler geleitet.


Die Öffnungsgrade der Ventile können sowohl mit einem minimalen als auch mit einem maximalen Öffnungsgrad begrenzt werden. Die Einstellung "ÖG Min." kann als Prozentwert des Öffnungsgrads eingestellt werden und beschränkt das Spannungssignal des Ventils.


In Anwendungen mit sehr niedrigen Außentemperaturen wird der Parameter "ÖG Min." verwendet, um zu verhindern, dass sich Sole im Gaskühler ansammelt.

Maximaler COP


Im normalen Betrieb ohne Übersteuerung hält der Regler den optimalen Druck im transkritischen Bereich aufrecht.

Übersicht

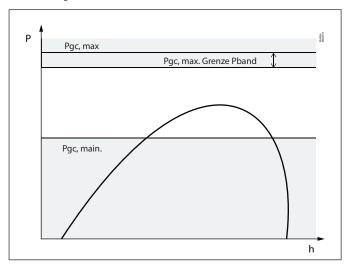
Sollwertkurve

Der Regler ist so vorprogrammiert, dass er dem optimalen COP-Wert aus dem Druck-Enthalpie-Diagramm folgt. Der obere Punkt ist auf 100 bar, 39 °C festgelegt. (Der optimale theoretische COP-Wert wird an der Kurve erreicht, die durch 100 bar und 39 °C verläuft. Der Schnittpunkt kann durch Einstellung eines vom Standardwert abweichenden Werts geändert werden.) Die Regelung folgt nun der eingestellten Sollwertkurve, kann aber nicht den eingestellten zulässigen Höchstdruck für den Gaskühler überschreiten. Der aktuelle Sollwert kann auf dem Übersichtsbildschirm des Reglers ausgelesen werden.

Unterkühlung

Es ist auch möglich, die Unterkühlung im subkritischen Bereich zu definieren.

Sollwert "Pgc"


Der Pgc-Sollwert wird normalerweise auf der Grundlage der maximalen COP-Kurve und des Verflüssigersollwerts ("Sgc ref") berechnet.

Wenn der Sgc-Wert deutlich über dem Sollwert liegt, wird der Pgc-Sollwert angehoben und basierend auf der aktuellen Sgc-Messung berechnet.

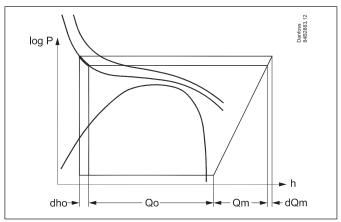
Der maximale Sgc-Sollwert kann begrenzt werden (Parameter "Sgc max ref"). In diesem Fall wird der Pgc-Wert auf Grundlage des Sgc-Sollwerts berechnet, bis der Maximalwert erreicht ist.

Der Pgc-Sollwert kann aufgrund der Wärmerückgewinnung erhöht werden (siehe Wärmerückgewinnungskreislauf für Heizung).

Die Grenzwerte für den Pgc-Sollwert sind "Pgc min" und "Pgc max – Pgc max.Grenze Pband". Der Pgc-Sollwert wird immer innerhalb dieser Grenzwerte gehalten.

Lüfterdrehzahl über DI zwangssteuern

Wenn "Zwangssteuerung Lüfterdrehzehl über DI" eingestellt und DI aktiviert ist, arbeiten die Gaskühlertemperatur- und Druckregelung ohne Verflüssigersollwert (Sqc-Sollwert). Der Pqc-Sollwert wird anhand des Sgc-Messwerts anstelle des Verflüssigersollwerts (Sgc-Sollwert) berechnet. Wenn der DI-Zustand AUS ist, erfolgt die Berechnung auf der Grundlage des Sgc-Sollwerts.


Sammlergasanteil

Es ist möglich, den Gasanteil zu begrenzen, der in den Sammler gelangt (d. h. der minimale Gasanteil). Dadurch wird der Pgc-Sollwert und der Sgc-Sollwert begrenzt, wodurch Betriebsbedingungen vermieden werden, die einen geringeren Anteil bieten.

Der Parameter ist auf den Konfigurationsseiten der Sammlerregelung einstellbar.

Zusätzliche Kälteleistung ("zusätzlicher Verdichter")

Diese Funktion verbessert die Kälteleistung der Anlage, indem der Sollwertdruck im Gaskühler (Pgc ref) erhöht wird. Die Funktion startet, wenn die Verdichterleistung 5 Minuten lang bei 100 % lag. Die Kühlleistung wird auf Q0+dh0 erhöht.

Die Funktion erhöht die Last am Verdichtermotor auch, wenn der Druck ansteigt Der Leistungsverbrauch wird auf Qm+dQm erhöht.

Bypass des Gaskühlers bei niedrigen Temperaturen

Wenn die Gastemperatur zu niedrig ist, muss das Gas um den Gaskühler herum geleitet werden.

Die Temperaturgrenzwerte werden mit der Funktion, "Untere Bypassgrenze - Shp" festgelegt.

Wenn aktiviert, wird die Gastemperatur vom Fühler Shp gemessen. Erfasst der Fühler einen Wert, der um 5 K höher als der festgelegte Wert ist, wird der Schalter umgelegt, um das Gas wieder durch den Gaskühler zu leiten.

Im Allgemeinen wird die Temperatur zuerst per Lüfterregelung reguliert, und die Lüfter stoppen, sobald die Temperatur zu stark sinkt. Dann übernimmt das Ventil, um die Temperatur über dem gewünschten Wert zu halten.

Bei modulierendem Bypassventil kann in den Einstellungen "ÖG Min." und "ÖG Max." der Öffnungsgrad in Prozentwerten eingestellt und dadurch der Betriebsbereich des Ventils festgelegt werden. Mit "ÖG Min." wird in der Bypassleitung ein Mindestdurchfluss sichergestellt.

Bei Bypassventil EIN/AUS

Wenn der Gaskühler vom Regler aufgrund der Wärmerückgewinnung umgangen wurde, wird bei einem erneuten Wechsel zum Gaskühlerbetrieb eine Timerfunktion gestartet. Die Timerfunktion sorgt dafür, dass während der Mindestabschaltzeit des Bypasses der Gaskühlerbetrieb aufrechterhalten wird, bis ein erneuter Bypassbetrieb möglich ist.

$\angle ! \setminus$ Warnung!

Bitte beachten, dass der Regler den Gasdruck regelt. Wenn die Regelung über einen internen oder externen Hauptschalter ausgeschaltet wird, schaltet auch diese Regelung aus.

Werden die Verdichter mit der externen Verdichter-Stoppfunktion angehalten, so wird die Gasdruckregelung fortgeführt.

5.7.5 Ejektorregelung

Prinzip

Die Ejektorwirkung wird erzielt, wenn die Flüssigkeit aus dem Gaskühler durch ein Strahlrohr gedrückt wird. Anschließend wird das Gas/die Flüssigkeit aus dem MT-Teil in eine Mischkammer geleitet. Das Gemisch gelangt in den Sammler.

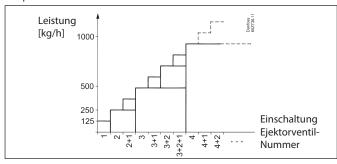
Multi-Ejektor

Der Ejektorblock ist in zwei Ausführungen erhältlich. Je nach Ausführung sind Strahlrohr, Saugleitung und Mischkammer auf verschiedene Weise optimiert, um Folgendes zu erreichen:

Druckerhöhung auf Hochdruck (HD): eine Einheit, die eine geringere Massenstromerhöhung, aber eine hohe Druckerhöhung liefern kann.

Druckerhöhung auf Niederdruck (ND): ein Ejektor, der den Massenstrom stärker erhöht, aber eine niedrigere Druckerhöhung liefert.

Flüssigkeitsanstieg (LE): ein Ejektor, der darauf ausgelegt ist, bei Niederdruck im Gaskühler für einen Flüssigkeitsanstieg zu sorgen.


Die Ejektoren sind integraler Bestandteil der Druckregelungsstrategie im Gaskühler. Der bevorzugte Ejektortyp hängt von den Ejektoreinsatzbereichen ab. Je nach Systemlayout gibt es unterschiedliche Prioritäten:

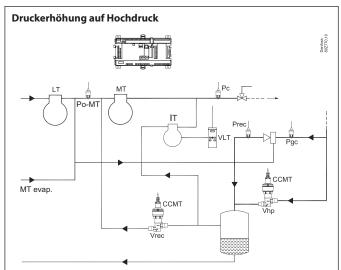
- Bevorzugter Ejektortyp, vorausgesetzt die bevorzugte Ejektorleistung ist verfügbar
- 2. Nicht bevorzugter Ejektortyp
- 3. Hochdruckventil, wenn keine Ejektorleistung mehr verfügbar ist.

Der Ejektorblock besteht aus mehreren fest installierten Ejektoren mit unterschiedlichen Leistungen. Die Leistungen sind bei den vier kleinsten Ejektoren binär und bei den größten Ejektoren zyklisch. Um die gewünschte Kapazität zu erreichen, werden die Ejektoren paarweise aktiviert.

- Für "Druckerhöhung auf Hochdruck (HD)" gilt z. B.: 125, 250, 500, 1000, 1000 und 1000 kg/h.
- Für die Einheit "Flüssigkeitsanstieg" stehen beispielsweise zur Verfügung: 200, 400 oder 200+400 oder 400+400 kg/h.
- In einem Block lassen sich auch Gas- und Flüssigkeitsejektoren kombinieren, wobei ein oder mehrere Flüssigkeitsejektoren zum Einsatz kommen können.

Beispiel

Dargestellt ist der Beginn der Druckerhöhung auf Hochdruck mit vier Ejektorventilen. Die Gesamtleistung kann bis zu einem Massenstrom von ca. 1875 kg/h erreicht werden.

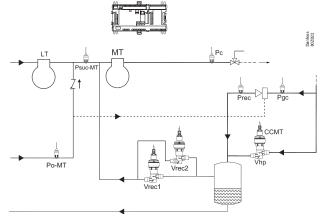

Bei Verwendung eines Hochdruckejektors mit 6 Ejektorventilen kann ein Massenstrom von bis zu 3875 kg/h erreicht werden. Die Ejektorstufen 4, 5 und 6 sind identisch (1000 kg/h) und werden mit der gleichen Anzahl an Zyklen betrieben. Die Regelstrategie ist bei ND-Ejektoren die gleiche, wobei diese allerdings nur in etwa die Hälfte der Massenstromkapazität von HD-Ejektoren liefern.

Anforderungen

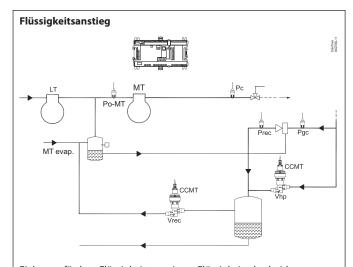
Die vier kleinsten Ejektorventile, die häufiger aktiviert/deaktiviert werden als die großen, **müssen über die Solid-State-Relais des Reglers gesteuert werden**. Die mechanischen Relais könnten diesen vielen Vorgängen nicht standhalten.

Regelung

Die Regelung erfolgt über ein Signal vom Druckmessumformer Pgc. Die Neutralzone liegt über dem Sollwert. Die Regelung schaltet die Ejektoren, wenn der Druck außerhalb der Neutralzone liegt.



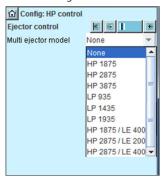
Diese Ejektorregelung ist eine Erweiterung der Regelung mit Parallelverdichtung. In diesem Fall wird der Druck eines Teils des Massenstroms erhöht (von MT auf IT).

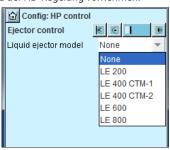

Druckerhöhung auf Niederdruck – Sommerbetrieb Niederdruck – Sommerbetrieb Prec Prec Prec Virect

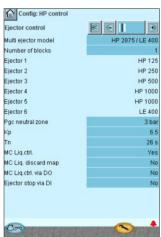
Bei dieser Ejektorregelung tritt keine Parallelverdichtung auf. Hier wird der Druck des gesamten Massenstroms vom MT-Verdampfer zum Sammler erhöht. Das Rückschlagventil verhindert Rückfluss in die MT-Verdampfer. ND-Verdichter entladen in die Saugleitung von MT-Verdichtern hinter dem Rückschlagventil.

Druckerhöhung auf Niederdruck – Winterbetrieb

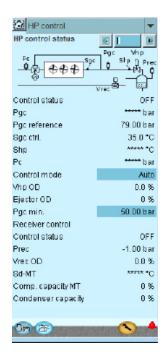
Ejektoren fördern Flüssigkeit von einem Flüssigkeitsabscheider zum Sammler. In Anlagen mit LE- und HD-Ejektoren haben entweder die LE- oder die HD-Ejektoren Vorrang für den Flüssigkeitsanstieg. Dies hängt vom Einsatzbereich der Ejektoren ab. Wenn keine Flüssigkeit vorhanden ist, wird Dampf erhöht.


Die Regelung von HD- und ND-Ejektorsystemen ist dargestellt mit parallel zu den Ejektoren montiertem Vhp-Ventil. Wenn die Ejektorleistung ausreicht, um den gesamten Gaskühler-Massenstrom zu bewältigen (bis zu vier Ejektorblöcke können parallel montiert werden), ist kein Vhp-Ventil erforderlich. Jedoch ist es für den Regler erforderlich, dass alle Einstellungen und Ausgangssignale so festgelegt bzw. vorhanden sind, als wäre das Ventil eingebaut.


In Anlagen mit adaptiver Flüssigkeitsregelung (ALC) muss in der Saugleitung ein Flüssigkeitsabscheider montiert sein. Die Ejektoren befördern Flüssigkeit vom Flüssigkeitsabscheider zum Sammler. Kann der Ejektor nicht genügend Flüssigkeit fördern, dann steigt der Flüssigkeitsstand an. Dadurch besteht das Risiko, dass der Verdichter ausfällt. Der Regler muss über ein Alarmsignal für den Flüssigkeitsstand im Flüssigkeitsabscheider verfügen. Der Regler kann bei Erreichen eines zu hohen Flüssigkeitsstands oder bei Verwendung der Ejektoren außerhalb ihres Einsatzbereichs ein entsprechendes Alarmsignal über die Datenübertragung senden und ein Relais aktivieren. Der Verdampferregler muss das Alarmsignal aufgrund eines übermäßig hohen Flüssigkeitsstands entweder per Verdrahtung oder per Datenübertragung empfangen. (Falls das Alarmsignal über eine Datenübertragung empfangen wird, muss die verwendete Systemeinheit in der Lage sein, diese Kommunikation zu übertragen.) Sobald die Verdampferregler das Alarmsignal empfangen, wechseln sie die Überhitzungsregulierung von freigegebener Flüssigkeitseinspritzung zu Trockenexpansion.



Einstellung


Die Einstellung können Sie auf Seite 2 der HD-Regelung vornehmen.

Werte im Übersichtsbild

Öffnungsgrad der festgelegten Ejektorventile

Ejektortyp und -größe

Die ersten sechs Eiektoren sind Gaseiektoren für die Erhöhung des Hochdrucks. Diese werden gefolgt von einer Kombination aus Gas- und Flüssigkeitsejektoren, die im gleichen Block montiert sind. Eine kombinierte Gas- und Flüssigkeitseinstellung ist nur möglich, wenn die Ejektoren im gleichen Block montiert sind.

Wenn die Einheit über einen separaten Block für Flüssigkeiten verfügt, so ist die Einstellung "Gas" nur für den "Gasblock" zu wählen. Der "Block für Flüssigkeiten" ist separat einzustellen, wie in der nachfolgenden Abbildung dargestellt.

Anzahl der Blöcke

Werden mehrere Blöcke ausgewählt, kommt eine andere Art des elektrischen Anschlusses an einen Ejektor zur Anwendung. Gas: Hierfür ist ein Ausgang an jedem Ejektor in Block 1 reserviert. Wenn mehrere Blöcke kombiniert werden, müssen die nachfolgenden Blöcke parallel mit dem ersten verbunden werden.

. Flüssigkeit: Hierfür ist ein Ausgang an jedem Ejektorventil reserviert, unabhängig von der Anzahl der Blöcke sowie der Tatsache, ob es sich um einen kombinierten Gas-/Flüssigkeitsblock handelt. Jedes Flüssigkeitsejektorventil hat seinen eigenen Anschluss, so ist beispielsweise kein paralleler Anschluss von Flüssigkeitsejektorventilen erforderlich.

MC Liq. Ctrl.

Die Funktion wird aktiviert, wenn die Verdampferregler den Betrieb mit "MC Liq ctrl." zulassen. Wenn die Funktion aktiviert wurde, muss der ÄK-PC 782B ein Niveausignal vom Flüssigkeitsabscheider erhalten. Die Ejektorregelung folgt dann diesem Signal und unterbricht "MC Liq. ctrl.", sobald das Niveau im Flüssigkeitsabscheider zu hoch wird. Die Ejektorregelung unterbricht auch dann "MC Liq. ctrl.", wenn der Druck

um den Eiektor vom zu erwartenden Wert abweicht. Der Druck weicht dann ab, wenn der Ejektor nicht mit der Bewegung der Flüssigkeit mithalten kann.

MC Liq ctrl. über DO

Wenn diese Einstellung aktiviert ist, wird ein Relaisausgang reserviert. Die Aktivierung des Ausgangs erfolgt, wenn die Ejektorregelung den Betrieb mit, MC Liq. ctrl." empfiehlt, und deaktiviert, wenn, MC Liq. ctrl." gestoppt werden muss.

Sobald die Verdampferregler das Signal "Stop MC Lig.ctrl." empfangen, wechseln sie von ihrer Überhitzungsregulierung auf Trockenexpansion.

MC. Flüss.ansammlung vermeiden

MC Liq. Ctrl. (Flüssigkeitsregelung) nutzt Niveauschalter und Timer nur bei hohem Füllstand

Ejektorstopp über DI

Wenn eine externe Kontaktfunktion eingesetzt werden sollten, die die Ejektorfunktion stoppen kann, ist sie hier einzustellen.

Beschreibung von

"MC liq. ctrl status": Main Switch Off:

Hauptschalter ist am Regler

ausgeschaltet High Level:

Der Flüssigkeitsstand im Flüssigkeitsabscheider ist zu hoch.

No lift: Es werden keine Ejektoren innerhalb ihres Einsatzbereichs betrieben.

No Ej.Cap:

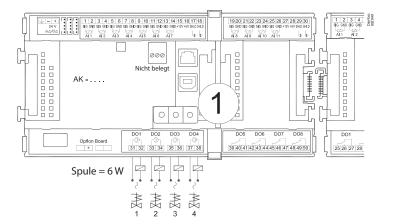
Ejektoren sind ausgeschaltet und haben keinen Durchsatz.

Timer:

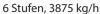
Der Regler senkt den Flüssigkeitsstand im Flüssigkeitsabscheider, bevor "MC liq. ctrl." zulässig ist.

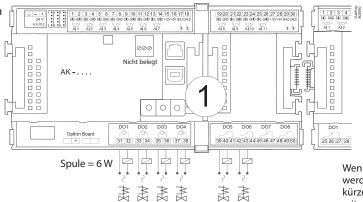
Permitted:

Der Timer ist abgelaufen und die Ejektoren können ALC aktiv betätigen.

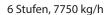

Dieser Timer zeigt die Restzeit bis zur erneuten Freigabe der MC-Flüssigkeitsregelung an, nachdem sie unterbrochen wurde, beispielsweise weil das Signal der Leistung an den Ejektoren fehlt, die Ejektoren außerhalb ihres Betriebsbereichs liegen oder der Flüssigkeitsniveauschalter einen vollen Abscheider gemeldet hat.

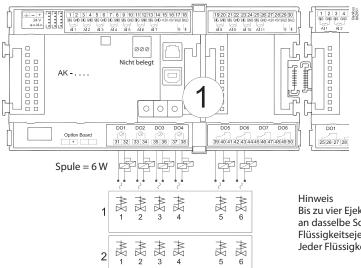
Ein Eiektorventil darf in einem Zeitraum von 24 Stunden durchschnittlich nicht mehr als einmal pro Minute ausgeschaltet werden. Wenn die Ausschaltung häufiger stattfindet, müssen die Regelparameter Pgc Neutralzone, Kp und Tn geändert werden. Die Angaben in den Feldern sind Gesamtwerte seit der letzte Rückstellung.




Empfohlene Anschlüsse

4 Stufen



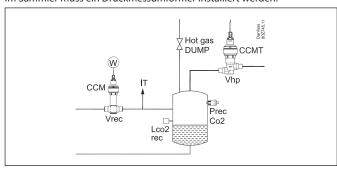

Ejektor	HD
	kg/h
1	125
2	250
3	500
4	1000
5	1000
6	1000

Wenn Ejektoren derselben Größe zugeschaltet werden müssen, dann startet der Ejektor mit der kürzesten Betriebszeit zuerst. Es folgt der Ejektor mit der zweitkürzesten Zeit, gefolgt von dem Ejektor mit der drittkürzesten Zeit.

Bis zu vier Ejektoren gleicher Größe können parallel an dasselbe Solid-State-Relais angeschlossen werden. Flüssigkeitsejektoren werden nicht parallel verbunden. Jeder Flüssigkeitsejektor hat seinen eigenen Austritt.

Alarmtext

Einstellung	Priorität (werkseitig)	Alarmtext Englisch	Beschreibung
Ejektor			
-	Hoch	Ejector Emergency	Kein Signal von Pgc. Der Öffnungsgrad der Ejektorventile wird auf einen durchschnittlichen zulässigen Wert eingestellt.
-	Hoch	Manual Ejector control	Die Ejektorregelung wird manuell gestoppt.



5.7.6 Sammlerdruckregelung

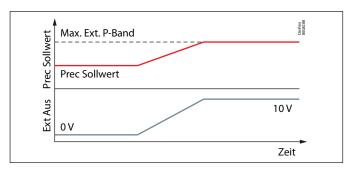
Der Sammlerdruck kann auf einen gewünschten Sollwert eingeregelt werden. Dazu koordiniert die Sammlerdruckregelung die Maßnahmen folgender Stellantriebe, sofern konfiguriert:

- Sammlerventil Vrec
- PV-Verdichtergruppe (optional)
- Heißgas-Mitteldruckanhebung (optional)
- Zusätzliches Ventil Vrec (optional), gleichzeitig oder in Sequenz mit dem vorherigen angesteuert.

Im Sammler muss ein Druckmessumformer installiert werden.

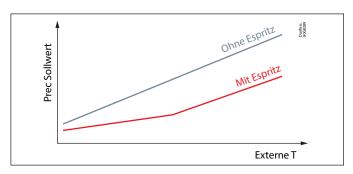
Sammlerdrucksollwert

Der Druck kann in einem der folgenden Modi geregelt werden, je nach der Methode, die zur Berechnung des Empfänger-Sollwerts verwendet wird und die unter "Prec ref Modus" eingestellt ist:

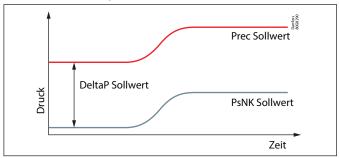

Konstanter Sollwert

Die Sammlerregelung arbeitet mit einem festen Einstellwert, der vom Benutzer definiert wird.

Ext.Verschiebg


Dieser hat den gleichen Sollwert wie ein fester Einstellwert, kann aber mit einem analogen Eingang bis zum maximalen Wert "Ext.Verschiebg max" verschoben werden.

PV Optimierung


Der Sammlerdruck ist optimiert, um den COP-Wert zu maximieren. Der optimale Sollwert wird unter Berücksichtigung von IT-Verdichtern oder Ejektoren berechnet, falls installiert.

Wenn Sgc zwischen 15 und 20 °C liegt, wird der Sammlerdrucksollwert auf 2 bar über dem NK-Sollwert reduziert.

Delta P

Der eingestellte Sollwert wird so niedrig wie möglich gehalten, sodass Delta P über dem NK-Drucksollwert liegt. Delta P wird in "Delta P Sollwert" eingestellt.

In jedem Modus wird der Sollwert zwischen "Prec min SW" und "Prec max SW" begrenzt.

In allen Modi, mit Ausnahme des Modus "Delta P", ist es bei Auswahl der Option "Delta P min aktivieren" möglich, den Sollwert höher als PsNK + "Delta P Sollwert" zu halten.

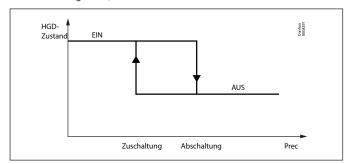
Eine weitere Begrenzung kann optional bei freigegebener Klimaunterstützung erfolgen. (Weitere Informationen finden Sie im Abschnitt Klimatechnik.)

Im manuell oder automatischen Modus kann das Sollwert-Management den Sammlerdrucksollwert ändern (siehe Abschnitt Sollwert-Management in diesem Benutzerhandbuch).

Das Vrec-Ventil und die PV-Gruppe haben den gleichen Sollwert. Die Regelungsstrategie entscheidet über den besten Stellantrieb unter den aktuellen Betriebsbedingungen und dem Zustand des Reglers.

Vrec-Ventil

Die Sammlerventilregelung basiert auf einem PI-Algorithmus. Der Benutzer kann den minimalen und maximalen Öffnungsgrad für den Stellantrieb festlegen. Um zu verhindern, dass CO₂ aus der Saugleitung entweicht, wird das Ventil vollständig geschlossen (Überschreibung ÖG min), wenn nicht alle NK-Verdichter verfügbar sind, z. B. wenn alle NK-Verdichter im Alarmzustand sind.


Wenn der PV-Verdichterverbund regelt, dient das Ventil als sekundärer Stellantrieb, der mit einem höheren (+4 bar) Sollwert arbeitet. Unterhalb dieses Sollwerts wird das Ventil geschlossen gehalten, wenn es bereits geschlossen ist. Oberhalb wird es über einen regulären PI-Algorithmus geregelt.

Heißgas-Mitteldruckanhebung

Bei tiefen Außentemperaturen besteht die Gefahr, dass sich der Druck des Sammlers systembedingt zu stark dem NK-Kreislauf nähert. Der Unterschied in den Verdampfern reicht dann möglicherweise nicht aus, um zu kühlen.

Um zu verhindern, dass ein solcher Zustand erreicht wird, kann ein Ventil für die Heißgas-Mitteldruckanhebung installiert werden, das die Druckleitung der Verdichter mit dem Sammler verbindet. Um den Druck im Sammler schnell wiederherzustellen, schaltet der Regler das Heißgas zum Sammler ein, wenn der Druck unter den Zuschaltwert fällt. Das Heißgas wird wieder abgestellt, wenn der Druck den Abschaltwert überschreitet.

PV-Verdichtergruppe (Parallelverdichter)

Die Parallelverdichtung (Zwischentemperatur, "PV") wird durch den PV-Verbund geregelt, die der von der Sammlerregelung kommende Anforderung folgt.

Weitere Details finden Sie im Abschnitt "Parallelverdichtung".

Notbetrieb

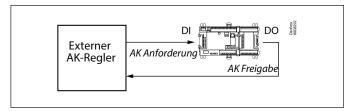
Bei einem Fehler des Sammlerdruckfühlers koordiniert die Sammlerdruckregelung die Stellantriebe wie folgt:

- Vrec ist auf Notfall-ÖG eingestellt, der proportional zum Sgc-Fühler die eingeschaltete NK-Verdichterleistung bestimmt.
- PV ist auf Notbetrieb eingestellt, die proportional zur eingeschalteten NK-Verdichterleistung basiert.
- Die Heißgas-Mitteldruckanhebung ist geschlossen.

Unter normalen Betriebsbedingungen speichert der Regler die durchschnittliche Stellantriebsposition für Vrec (letzte 24 h) und IT (letzte 1 h) unter Berücksichtigung der aktuellen Betriebsbedingungen der Anlage.

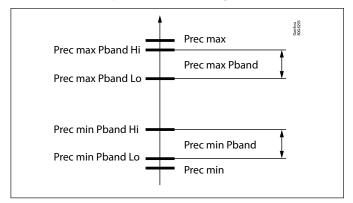
Der Durchschnitt für Vrec wird nur unter Berücksichtigung der Zeiträume berechnet, in denen Vrec den Sammlersollwert regelt (d. h. es ist der primäre Stellantrieb).

Klimatechnik


Mit dem Parameter "AK Support" kann der Betrieb mit Klimaanlage aktiviert werden. Wenn die Funktion aktiviert ist, sind das Eingangssignal "AC Anforderg" und das Ausgangssignal "AC Freigabe" in der E/A-Konfiguration verfügbar.

Wenn ein Signal von einem externen Regler am Eingang "AC Anforderg" empfangen wird, gibt der Regler den Klimabetrieb frei, wenn die aktuellen Bedingungen dies zulassen.

"AC Status" gibt Auskunft über die AC-Freigabe bzw. den Grund der Nichtfreigabe:


- Fehler Prec-Fühler: Fehler Sammlerdruckfühler
- Min Prec: Prec unter "AC Frostschutz" (2 °C, nicht konfigurierbar)
- Max Prec: Prec über "AC Sperre" (siehe Details unter "Sicherheitsmaßnahmen")
- Max Ps-NK: PsNK über "To max Alarm" für NK
- PV nicht verfügbar: PV-Verbund ist in einer Anlage mit Parallelverdichtung nicht verfügbar (Verdichter im Alarmzustand)
- Timer: Klimatechnik nicht freigegeben, warten auf Ablauf des Timers
- Nicht angefordert: Keine Klimabetrieb-Anforderung
- Aktiv: Klimabetrieb wird freigegeben

Es ist möglich, Grenzwerte für den Prec-Sollwert einzustellen, der verwendet wird, wenn der Klimabetrieb freigegeben wird (Parameter "AC Prec Grenzen"): Der Sollwert für den Sammlerdruck wird innerhalb der benutzerdefinierten Grenzwerte gehalten ("AC Prec min/max SW"). Wenn das Signal wieder ausgeschaltet wird, erfolgt keine Beschränkung der Sammlersollwerte.

5.7.7 Sicherheitsmaßnahmen

Bei hohem oder niedrigem Sammlerdruck können Sicherheitsmaßnahmen innerhalb von zwei Proportionalbereichen konfiguriert werden.

Nachstehend finden Sie eine Beschreibung der Maßnahmen.

Maßnahmen bei hohem Sammlerdruck

Die Vermeidung eines hohen Sammlerdrucks ist wichtig für die Sicherheit des Systems, doch wird durch drastische Maßnahmen die Funktionalität anderer Teilsysteme beeinträchtigt. Daher bietet das AK-PC 782B verschiedene Optionen:

Sperre des Klimabetriebs	immer aktiv
Begrenzung der Wärmerückgewinnung	immer aktiv
Steigende Lüfterleistung	immer aktiv
Abnehmende NK-Leistung	optional, standardmäßig ein
Abnehmende Ejektor- und Vhp- Leistung	optional, standardmäßig aus

Maßnahmen bei hohem Sammlerdruck werden ergriffen, wenn die Prec-Messung zwischen Prec max PbandMin und Prec max PbandMax liegt. Dieser Bereich wird als "Prec max Pband" bezeichnet.

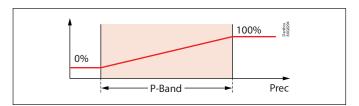
Sobald der Sammlerdruck in dem P-Band liegt, wird der Klimabetrieb deaktiviert. Nach der Deaktivierung bleibt er für eine voreingestellte Zeit ausgeschaltet.

Begrenzung der Wärmerückgewinnung

Wenn Prec im max. P-Bandbereich liegt, wird der Sgc-Sollwert aufgrund der Wärmerückgewinnungsanforderung nicht erhöht.

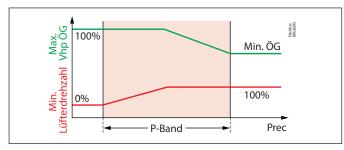
Reduzierung der NK-Leistung (optional):

Sie ist aktiv, wenn eine NK-Abschaltung bei hohem Prec-Wert aktiviert ist.


Wenn der Sammlerdruck 75 % des max. P-Bands erreicht, schaltet der NK alle 30 Sekunden 25 % der aktuellen Betriebsleistung ab. Es gibt eine Verzögerung, bevor die Leistung wieder erhöht werden kann.

Lüfterdrehzahl erhöhen und Vhp und Ejektor verringern (optional)

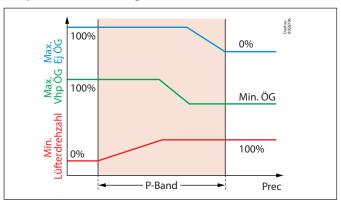
Diese Gaskühler-Maßnahmen hängen von der Benutzereinstellung "Vhp schließ bei max Prec" ab und davon, ob Ejektoren montiert sind.


Fall 1: Die Option "Vhp schließ bei max Prec" ist deaktiviert: Die minimale Lüfterdrehzahl wird schrittweise von 0 bis 100 % über das gesamte P-Band erhöht.

Fall 2: Die Option "Vhp schließ bei max Prec" ist aktiviert und es sind keine Ejektoren eingebaut:

In der unteren Hälfte des P-Bandes wird die minimale Lüfterdrehzahl von 0 auf 100 % angehoben.

In der oberen Hälfte wird der maximale Öffnungsgrad des Hochdruckventils von 100 % auf Min ÖG gesenkt.



Fall 3: Die Option "Vhp schließ bei max Prec" ist aktiviert und es sind Ejektoren montiert:

In der unteren Hälfte des maximalen P-Bands wird die minimale Lüfterdrehzahl von 0 auf 100 % erhöht.

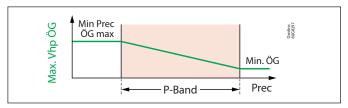
Im Bereich von 50–75 % des maximalen P-Bands wird der maximale Öffnungsgrad des Hochdruckventils von 100 % auf Min ÖG gesenkt. Der minimale Öffnungsgrad des Hochdruckventils gilt weiterhin, um einen zuverlässigen Sgc-Fühlermesswert zu erreichen.

In dem Bereich von 75–100 % des maximalen P-Bands werden die Ejektoren schrittweise geschlossen.

5.7.8 Maßnahmen bei niedrigem Sammlerdruck

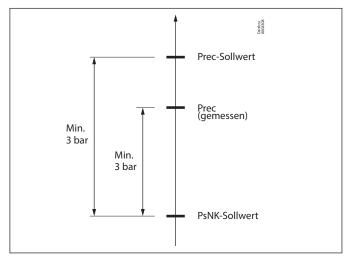
Die Vermeidung eines niedrigen Sammlerdrucks ist wichtig, um die Kühlung aufrechtzuerhalten. Neben der Verwendung der Sammlerstellantriebe zur Erhöhung des Sammlerdrucks ist die Wärmerückgewinnung deaktiviert und der Benutzer kann die Option "Vhp offen bei min Prec" im Konfigurationsmenü der Sammlerregelung aktivieren.

Wärmerückgewinnung deaktivieren


Die Wärmerückgewinnung hat geringere Priorität als die Aufrechterhaltung eines ausreichend hohen Sammlerdrucks. Daher deaktiviert der Regler die Wärmerückgewinnung, wenn Prec niedriger als "WRG Sperre" ist.
Nach einer Deaktivierung bleibt die Wärmerückgewinnung mindestens 10 Minuten lang abgeschaltet.

Aufhebung des Klimabetriebs für Frostschutz

Wenn das Temperaturniveau im Behälter zu niedrig ist, besteht die Gefahr von Frostschäden an den Leitungen für den Klimabetrieb. Um dies zu verhindern, wird der Klimabetrieb deaktiviert, wenn der Sammlerdruck unter "AC Frostschutz" liegt. Nach der Deaktivierung bleibt er für eine voreingestellte Zeit ausgeschaltet. "AC Frostschutz" ist der Druck, der einer gesättigten Temperatur von 2 °C entspricht.


Vhp offen bei min Prec:

Wenn diese Funktion aktiviert ist, wird der minimale Öffnungsgrad für Vhp schrittweise von "Vhp min ÖG" zu "Vhp Max ÖG min Prec" als P-Bandregelung erhöht, wenn der Sammlerdurck von "Prec min PbandMax" auf "Prec min PbandMin" absinkt. Nach 5 Minuten schaltet der letzte Verdichter aus und das Vhp kann vollständig schließen, ohne dass ein Mindestöffnungsgrad berücksichtigt wird.

Bei Betrieb unter kalten Bedingungen:

Ist Shp kälter als die gesättigte Temperatur von "Prec min PbandMax", wird die Funktion deaktiviert. Es wird davon ausgegangen, dass nicht ein niedriger Ladezustand, sondern ein niedriger Sgc-Wert das Problem ist.

5.7.9 Parallelverdichtung

In transkritischen Systemen, die in wärmeren Umgebungen liegen, verbessert sich der COP durch den Einsatz der Parallelverdichtung bedeutend. Es werden ein oder mehrere Verdichter eingesetzt, um in warmen Perioden den Sammlerdruck stabil zu halten, wenn die Außentemperatur steigt – in erster Linie während der Sommermonate. Die Parallelverdichtung (Zwischentemperatur, "PV") wird durch den PV-Verbund geregelt.

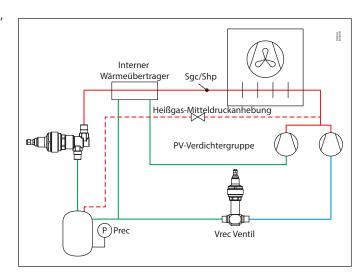
Sie empfängt die Anforderung von der Sammlerregelung, die den Verdichter bei Bedarf startet, sodass der Sammlerdruck auf dem gewünschten Niveau gehalten wird.

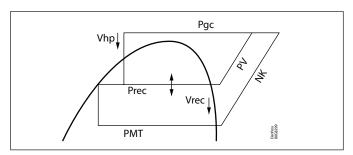
Auf der Seite zu "Leist.Regl.Status PV" ist es möglich, die "PV-Verdi. Anfordg", d. h. die aktuell angeforderte Regelung durch den Sammlerregelungsalgorithmus abzurufen. Nachstehend finden Sie eine Liste der möglichen Werte:

- Freier Betrieb: Regeldruck als regulärer Verbund
- Start erzwingen: Steuerdruck, aber der Start wird über die Minuszone erzwungen
- Keine Leistungsänderung: Leistung wird auf aktueller Leistung fixiert
- · Vollständiger Stopp: Verdichter werden zwangsausgeschaltet
- WRG Notbetrieb: Es wird die berechnete Notfallanforderungsleistung während eines Prec-Fühlerfehlers eingeschaltet

Der PV-Verbund ist möglicherweise nicht in der Lage, die Sammleranforderung auszuführen, z. B. weil bei den Verdichtern ein Alarm ansteht. In diesem Fall verwendet die Sammlerdruckregelung Vrec als primären Stellantrieb.

Anforderungen für die Parallelverdichtung


Die Sammlerdruckregelung verhindert den Betrieb mit Parallelverdichtern unter Bedingungen, die für die Anlage ineffizient oder gefährlich für die Verdichter sein können. Nachstehend sind die Bedingungen aufgeführt, die erfüllt sein müssen, bevor der PV-Verdichter gestartet wird:


- Sgc-Sollwert höher als "PV Verdi Sgc min"
- Shp-Sensor höher als "PV Verdi Sgc min". Bei einem Shp-Fühlerfehler oder wenn Shp nicht konfiguriert ist, wird stattdessen Sgc verwendet
- · NK-Verdichter nicht in Minuszone
- Der gefilterte Min-Öffnungsgrad für Vrec ist größer als "PV Start Vrec ÖG"

Wenn eine dieser Bedingungen nicht zutrifft, lautet die Anforderung der Sammlerdruckregelung "Komplette Abschaltung", und "Status Info" zeigt den Grund dafür an.

Wenn der PV-Verdichter läuft, ist die einzige Bedingung, die weiterläuft, dass der Sgc-Sollwert über "PV Verdi Sgc min" minus 2°K liegt.

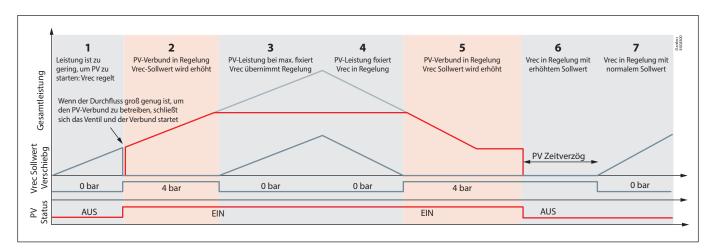
Hinweis: Unter Notfallbedingungen werden die oben genannten Anforderungen vereinfacht, wenn die Parallelverdichtung die Hauptkühlung schützen kann, d.°h. ein ineffizienter Betrieb ist dann zulässig.

Hochfahren der Sammlerlast

Nach dem Start des Reglers regelt das Vrec-Ventil den Sammlerdruck (1). Vrec regelt Prec so lange, bis der gefilterte Öffnungsgrad (siehe Ende dieses Absatzes) größer ist als der Wert "PV Start Vrec ÖG": dann startet der PV-Verdichter (2).

Der Status des Vrec/PV-Schalters wird in "PV Start Zähler" auf der Seite über den Empfängerstatus angezeigt. Dieser erreicht 100 %, wenn das Vrec-Ventil weit genug geöffnet ist, um auf die PV-Regelung zu wechseln. Der Regler regelt nun die Drehzahl des PV-Verdichters, um den Druck im Sammler auf dem gewünschten Niveau zu halten.

Wenn der PV-Verdichter startet, wird das Vrec-Ventil sofort um den Wert des Parameters "PV Verdi. Start" geschlossen und regelt weiterhin als Sicherheit mit einem höheren Sollwert.


Erreicht der PV-Verdichter die max. Leistung, wird diese fixiert und der Vrec-Sollwert wird auf den aktuellen Prec-Sollwert gesenkt. Das Vrec-Ventil steuert das Prec beim aktuellen Sollwert (3).

Der Parameter "PV Start Verzög. Filter" (PV-Start verzögerungsfilter) ist die Zeitkonstante für die Filterung von Vrec, die die Zeit verzögert, in der der PV-Verdichter die Regelung übernimmt. Dadurch wird sichergestellt, dass die Last konstant hoch genug ist, um den PV-Verdichter zu starten.

Herunterfahren der Sammlerlast

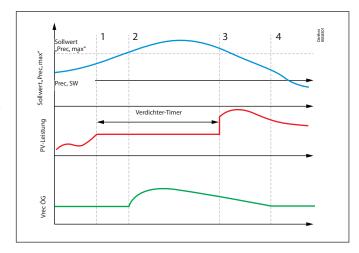
Wenn die Gasbeaufschlagung im Sammler abnimmt, regelt Vrec weiterhin Prec zum aktuellen Sollwert, bis es geschlossen ist. (4) Sobald die Vrec geschlossen ist, wird die Regelung auf den PV-Verdichter umgeschaltet. Der PV regelt Prec, bis der aktuelle Vrec-Sollwert erhöht wird (5). Der PV wird gestoppt, wenn der Pump-down-Grenzwert erreicht ist. Bei ausgeschaltetem PV regelt Vrec das Prec-Ventil zum aktuellen Sollwert.

Der Parameter "PV Verzög.zeit" (Parallelverdichter-Endverzögerung) bestimmt die Dauer, während der PV-Verdichter abgeschaltet sein muss, bevor die Regelung wieder auf das Ventil übergeht. Je höher der Wert, desto länger die Betriebsdauer des PV-Verdichters.

Verzögerung der PV-Antwort

Obwohl der PV-Verbund im Regelbetrieb ist, kann seine Reaktion durch einen Verdichter-Timer verzögert werden. In diesem Fall wird Vrec verwendet, um den Druck zu regeln.

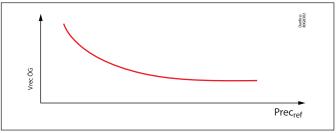
Siehe Abbildung unten.


Prec beginnt zu steigen (1).

Prec erreicht die Aktivierungsgrenze (2) für das Bypassventil, das daraufhin mit der Unterstützung des PV-Verbunds startet. Die Ventilregelung arbeitet als Sicherheit mit dem höheren Sollwert.

Wenn der Verdichter-Timer abläuft (3), startet der PV-Verbund den Verdichter. Daraufhin beginnt Prec schnell zu sinken.

Das Vrec-Ventil schließt und wird deaktiviert (4).


Der PV-Verbund regelt wieder im normalen Betrieb.

PV Smart start

Die ideale Einstellung für "PV Start Vrec ÖG" ändert sich mit den Betriebsbedingungen: sowohl der Sammlerdruck als auch der NK-Saugdrucksollwert sind häufig variable Sollwerte.

Der Regler kann den Wert für "PV Start Vrec ÖG" automatisch berechnen, wenn "PV Smart start" aktiviert ist, die richtigen Größen und Drehzahlen für die PV-Verdichter eingestellt sind und das Vrec-Ventil eingerichtet ist.


Um die Funktion zu aktivieren, wählt der Benutzer bei **PV Smart start Freigabe** "Ja". (Wenn dieser Parameter auf "Nein" eingestellt ist, erfolgt der Wechsel von Vrec zu PV beim festen Wert von *PV Start Vrec ÖG.*)

Das Modell basiert auf den Informationen zu **Vrec-Ventiltyp** in der E/A-Konfiguration.

Bei der Verwendung von entsprechend freigegebenen **Danfoss-Ventilen** sind keine weiteren Informationen erforderlich: der Regler verwendet die interne Modellkorrelation.

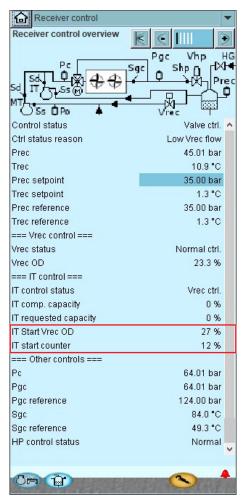
Für **Andere Ventiltypen** kann "Benutzerdefiniert" ausgewählt werden. Der Benutzer gibt an:

- · Motorart (nur für Schrittmotorventile)
- Kv-Ventil [m³/h]: Kv-Parameter des Ventils
- Durchfluss bei 50 % [%]: Volumenstrom % bei ÖG=50 %, je nach Ventilkennlinie. Damit wird die Form der Ventilkurve definiert.

Auf der Statusseite zeigen die folgenden Anzeigen das Verhalten der Regelung.

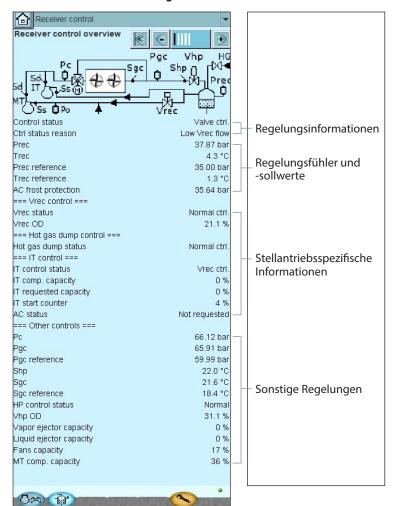
PV Start Vrec ÖG:

Aktuell berechneter Öffnungsgrad des Bypassventils, der bestimmt, wann vom Bypassventil zu den PV-Verdichtern gewechselt wird.


PV Start Zähler:

Anzeige der Differenz zum Schaltpunkt. Die Umschaltung von Vrec auf PV erfolgt, wenn dieser Wert 100 % erreicht.

Liste der freigegebenen Ventile:


- CCM 10-20-30-40 (nur Schrittmotor)
- CCMT 3L-5L-8L-10L (nur Schrittmotor)
- CCMT 2-4-8-16-24-30-42 (nur Schrittmotor)
- ICM 20A, 25A, 32A, 40A, 50A, 65A (nur Spannung AO)
- ICM 20A-33, 25A-33 (nur Spannung AO)

Vrec 1	2 - 10	User defi
Max operating Steps		1100
Hysteresis		0
Step Rate		200
Holding Current		40 %
Overdrive Init		10 %
Phase Current		100
Soft landing init		None
Failsafe pos.		0 %
Kv valve		1.0 m³/h
Flow at 50%		30 %

Werte in der Übersichtsanzeige

"Status Regelung" beschreibt, worauf die Regelung reagiert: Min Sgc SW: Niedriger Sgc-Sollwert Min Sgc: Niedrige Sgc-Temperatur Min Shp: Niedrige Shp-Temperatur NK in -zone: NK in Minuszone Min Vrec D-fluss: Zu geringer Durchfluss an Vrec Normal: Keine Einschränkung, normale Regelung Vrec Manuell: Vrec-Ventil ist im manuellen Modus PV bei max: PV-Verdichter liefert maximale Leistung PV nicht verfügbar: PV-Verdichter kann nicht starten (Verdichteralarme) NK nicht verfügbar: NK-Verdichter kann nicht starten (Verdichteralarme/Timer) Prec Fühlerfehler: Fehler Prec-Fühler PV End-Verzög.: PV-Verdichter bleibt nach dem Ausschalten im Regelmodus

und ermöglicht einen Neustart

Dem Status ist nichts hinzuzufügen

Standard:

"Status Regelung" beschreibt, was die Regelung tut:

AUS:
Hauptschalter ist aus
Fehler/Notbetrieb
Fühlerfehler Sammler
Ventilregl.
Sammlerventil ist die
primäre Regelung
PV Regl.
PV-Verbund ist die primäre
Regelung
Mitteldr.regl.
HeißgasMitteldruckanhebung ist

Standby Keine Regelung

aktiv

5.8 Sollwert-Management

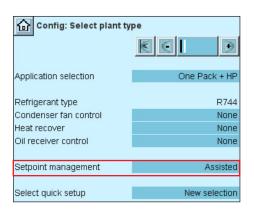
Einführung

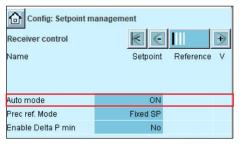
Die Komplexität des CO₂-Verbunds hat in den letzten zehn Jahren dramatisch zugenommen. Die starke Wechselwirkung zwischen Gaskühler und Sammler, die Einführung von Parallelverdichter und Ejektoren sind nur einige Beispiele dafür.

Dementsprechend hat die Anzahl der Einstellwerte zugenommen, die schwieriger zu handhaben sind, insbesondere wenn die Einstellwerte vom Regler permanent optimiert werden.

Aus diesem Grund verfügt das AK-PC 782B über ein Sollwert-Management. Es stehen drei Modi zur Verfügung, die die folgenden verschiedenen Funktionen ermöglichen:

Manueller Modus

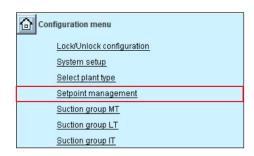

- · Neuer Abschnitt "Sollwert-Management" im Service-Tool
- Übersichtliche Darstellung aller druckbezogenen Einstellwerte

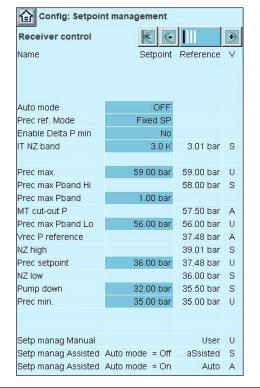

Vorgegebener Modus

- Sicherstellung der korrekten Reihenfolge der Einstellwerte, damit die Regelungsmaßnahmen in der richtigen Reihenfolge erfolgen
- Anpassung der Sollwerte an den variablen Einstellwert: Überschreiten von Sollwerten vermeiden
- · Vermeidung von Alarmen bei niedrigem/hohem Druck

Automatischer Modus

- · Automatische Einstellung und Optimierung vieler Parameter
- Reduzierung der vom Benutzer einzustellenden Parameter

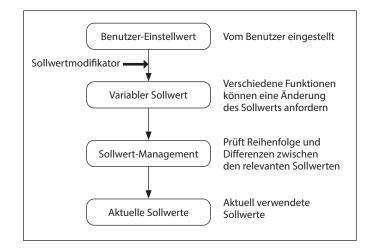

Übersichtsbildschirme des Sollwert-Managements

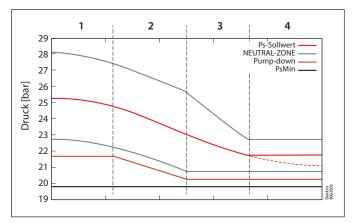

Einstellwerte: Zentrale Stelle zur Konfiguration der Einstellwerte.

Sollwerte: Übersicht über die aktuell verwendeten Sollwerte. Alle Angaben in Druckeinheiten zum einfachen Vergleich.

Q-Spalte: Angaben zur Quelle der Sollwerte:

- U = Sollwert wie vom Benutzer angegeben.
- S = Regler hat einen benutzerdefinierten Einstellwert verschoben, um eine korrekte Regelung zu erreichen.
- A = Automatische Einstellung vom Regler.

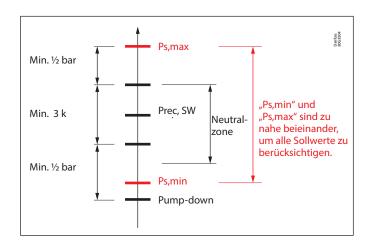



Unterstütztes Sollwert-Management

Im freigegebenen Modus sorgt das Sollwert-Management dafür, dass sich die Sollwerte an variable Sollwerte anpassen, um zu erreichen, dass sie in der richtigen Reihenfolge und mit minimalen Abständen zueinander bleiben.

Beispiel:

- Der NK-Sollwert fällt ab, z. B. aufgrund der Ps-Optimierung oder des externen Verschiebungen. Bisher gab es keine Maßnahmen durch das Sollwert-Management.
- 2. Die Neutralzone nähert sich dem Pump-down-Grenzwert. Um die korrekte Reihenfolge sicherzustellen, wird der Pump-down-Grenzwert nach unten gesenkt (min. ½ bar unter der Neutralzone).
- 3. Der Pump-down-Grenzwert kann aufgrund des PsMin-Grenzwerts (min. $\frac{1}{2}$ bar) nicht noch weiter abgesenkt werden. Nun wird die Neutralzone abgesenkt, um sie über dem Pump-down-Grenzwert zu halten.
- Die Neutralzone beträgt jetzt nur noch 3 K und wird nicht weiter reduziert. Für den NK-Sollwert gibt es nun keine Möglichkeit mehr, weiter abgesenkt zu werden.


Anwendungsbereich der Verbunde

Benutzerdefinierte Alarmgrenzen werden nur verschoben, um sie in die physikalischen Grenzen einer CO₂-Anlage einzugrenzen:

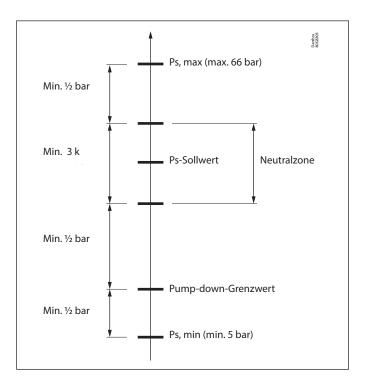
- Über 66 bar (ca. 27 °C) werden Flüssigkeit und Dampf in der Dichte einander so ähnlich, dass die Trennung im Sammler nicht mehr ordnungsgemäß funktioniert. Selbst der Grenzwert "Ps,max" muss unter diesem Wert liegen.
- Unter 4,2 bar (bei -56 °C)gefriert CO₂. Der Grenzwert "Ps,min" muss über 6 bar (ca. -53 °C) liegen.

Andernfalls werden die Alarmgrenzen nicht verschoben.

Wenn die Alarmgrenzen zu nahe beieinander liegen, um alle dazwischen liegenden Sollwerte zu berücksichtigen, hat der maximale Sollwert Vorrang vor dem unteren Sollwert. Dies führt in der Regel zu häufigen Niederdruckalarmen.

Freigegebene Sollwerte für NK- und TK-Verbund

Der benutzerdefinierte Einstellwert für die PsNK- und die PsTK-Sollwerte kann durch die Optimierung des Saugdruckesdrucks oder durch die externe Verschiebung verändert werden. Die Ergebnisse werden dann dem Sollwert-Management übermittelt, um die tatsächlich verwendeten Sollwerte zu erhalten.


Die verschiedenen Einstellwerte um die NK- und TK-Sollwerte werden auf die gleiche Weise behandelt.

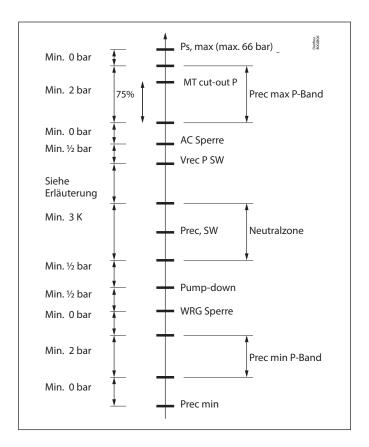
Das Sollwert-Management sorgt für die richtige Reihenfolge:

- Maximaler Ps-Sollwert (Ps,max)
- Oberer Grenzwert der Neutralzone (NZ oben)
- Aktueller Ps-Sollwert (Ps,SW)
- Unterer Grenzwert der Neutralzone (NZ unten)
- Pump-down-Grenzwert (PumpDown)
- Minimaler Ps-Sollwert (Ps,min)

Das Sollwert-Management hält die Mindestabstände zwischen den Sollwerten ein, wie in der Abbildung dargestellt.

Wenn der Benutzer die Neutralzone mit einer Breite größer als 3 K einstellt, kann sie nach unten gesenkt werden, aber sie wird nicht erweitert, wenn der Benutzer die Neutralzone kleiner als 3 K einstellt.

Freigegebene Einstellwerte für den PV-Verbund

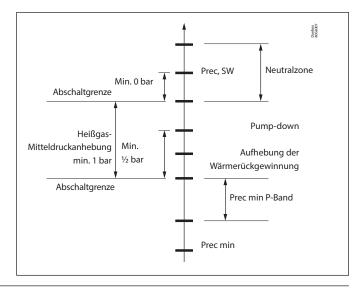

Wenn im freigegebenen oder automatischen Modus gearbeitet wird, werden die verschiedenen Einstellwerte für den PV-Verbund in der in der Abbildung gezeigten Reihenfolge beibehalten.

Wenn der PV-Verbund regelt, wird der Sollwert *Vrec* berechnet als das Maximum von:

- Prec-Sollwert + 4 bar,
- oberer Grenzwert der Neutralzone plus 2 bar, andernfalls entspricht er dem *Prec-Sollwert*.

Der Grenzwert NK Ausschalt.P liegt bei 75 % des oberen P-Bands.

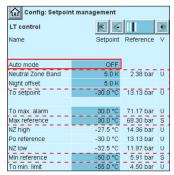
Die Parameter "AC Sperre" und "WRG Sperre" befinden sich unterhalb des maximalen bzw. oberhalb des minimalen P-Bands.

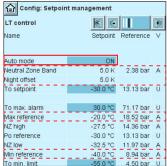


Freigegebene Einstellwerte für Heißgas-Mitteldruckanhebung

Der Einschaltgrenzwert muss unter dem Pump-down-Grenzwert liegen, da sonst der Grenzwert für die Heißgas-Mitteldruckanhebung möglicherweise nicht erreicht werden kann.

Der Einschaltgrenzwert sollte über *Prec min Pband* liegen, da die Anlage in diesem P-Band den Heißgaskreislauf effektiv zur Erhöhung des Sammlerdrucks nutzt. Das ist sehr ineffizient.




Automatische Einstellwerte

Zur einfachen Bedienung bietet das Sollwert-Management die Funktion **Automatischer Modus**. Dieser kann für jeden Verbund einzeln ausgewählt werden (dargestellt ist der TK-Verbund). Er kann verwendet werden, um die Notwendigkeit der Angabe von Einstellwerten im Allgemeinen zu verringern. Nach der Rückkehr in den unterstützten Modus werden alle ursprünglichen Einstellwerte wiederhergestellt.

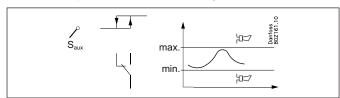
Das Sollwert-Management ergänzt im **automatischen Modus** die ausgewählten Einstellwerte automatisch. Sie brauchen nicht mehr vom Benutzer eingegeben zu werden.

Der **automatische Modus** ist nur in Verbindung mit dem **freigegebenen Modus** verfügbar. Nachdem das AK-PC 782B die automatischen Einstellwerte eingegeben hat, unterliegen sie allen Regeln, die im **freigegebenen Modus** gelten.

5.9 Generelle Überwachungsfunktionen

Allgemeine Alarmeingänge (10 Stück)

Ein Eingang kann zur Überwachung eines externen Signals benutzt werden.

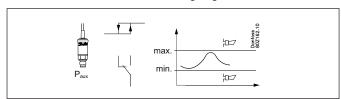


Das einzelne Signal lässt sich an die aktuelle Anwendung anpassen, da der Alarmfunktion ein Name gegeben sowie ein Alarmtext zugeteilt werden kann.

Für den Alarm kann eine Zeitverzögerung eingestellt werden.

Allgemeine Thermostatfunktionen (10 Stück)

Die Funktion kann beliebig zur Alarmüberwachung der Anlagentemperatur oder zur EIN-/AUS-Thermostatsteuerung eingesetzt werden. Ein Beispiel ist die Thermostatsteuerung des Verdichterraumlüfters.


Der Thermostat kann entweder einen zur Regelung benutzten Fühler (Ss, Sd, Sc3) oder einen unabhängigen Fühler (Saux1, Saux2, Saux3, Saux4) benutzen.

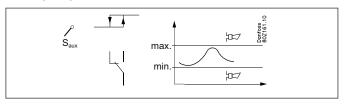
Die Ein- und Ausschaltgrenzen des Thermostats sind einzustellen. Der Thermostatausgang schaltet auf Grundlage der aktuellen Fühlertemperatur. Es lassen sich Alarmgrenzen für Niedrig- bzw. Hochtemperatur einschließlich separater Alarmverzögerungen einstellen. Die einzelne Thermostatfunktion lässt sich an die jeweilige Anwendung anpassen, da dem Thermostat ein Name gegeben sowie ein Alarmtext zugeteilt werden können.

Allgemeine Druckschalterfunktionen (5 Stück)

(Bei Druckregelung im Sammler wird einer der fünf Druckschalter hierfür verwendet. Dies bedeutet, es stehen noch vier allgemeine Druckschalter zur Verfügung.)

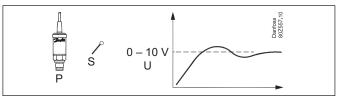
Die Funktion kann beliebig zur Alarmüberwachung des Anlagendrucks oder zur EIN-/AUS-Druckschaltersteuerung eingesetzt werden.

Der Druckschalter kann entweder einen zur Regelung benutzten Fühler (Po, Pc) oder einen unabhängigen Fühler (Paux1, Paux2, Paux3) benutzen. Die Ein- und Ausschaltgrenzen des Druckschalters sind einzustellen. Der Druckschalterausgang schaltet auf Grundlage des aktuellen Drucks. Es lassen sich Alarmgrenzen für Niedrig- bzw. Hochdruck einschließlich separater Alarmverzögerungen einstellen.


Die einzelne Druckschalterfunktion lässt sich an die jeweilige Anwendung anpassen, da dem Druckschalter ein Name gegeben sowie ein Alarmtext zugeteilt werden können.

Allgemeine Spannungseingänge mit angeschlossenem Relais (5 Stück)

Für die Überwachung verschiedener Spannungsmessungen der Anlage sind fünf allgemeine Spannungseingänge vorhanden. Als Beispiele können die Überwachung eines Lecksensors und die Feuchtigkeitsmessung genannt werden, jeweils mit zugehörigen Alarmmeldefunktionen. Die Spannungseingänge können zur Überwachung der Standard-Spannungssignale verwendet werden (0–5 V, 1–5 V, 2–10 V oder 0–10 V). Gegebenenfalls kann man auch 0–20 mA oder 4–20 mA benutzen, falls externe Widerstände am Eingang angebracht werden, um das Signal an die Spannung anzupassen. Es kann ein Relaisausgang an die Überwachung angeschlossen werden, sodass man externe Einheiten steuern kann.

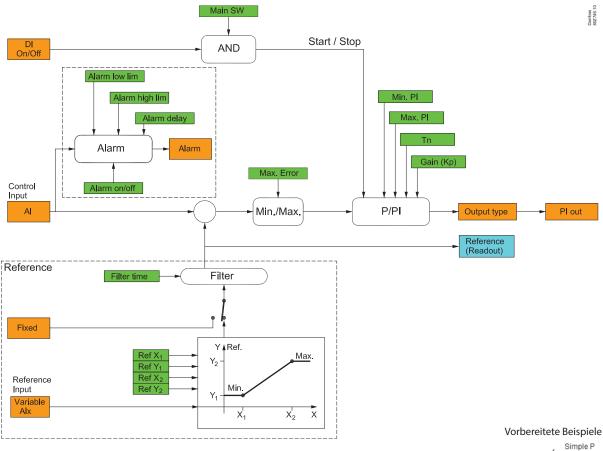

Für jeden Eingang kann Folgendes eingestellt/ausgewiesen werden:

- · Frei definierbarer Name
- Wahl des Signaltyps (0–5 V, 1–5 V, 2–10 V oder 0–10 V) oder anderes Signal
- Skalierung der Anzeige, damit sie der Maßeinheit entspricht
- · Hohe und niedrige Alarmgrenze einschl. Verzögerungszeiten
- · Frei definierbare Alarmtexte
- Zuweisung eines Relaisausgangs mit Ein- und Abschaltgrenzen einschl. Verzögerungszeiten

Allgemeine PI-Funktionen (6 Stück)

Die Funktion kann frei zur Regelung einer erforderlichen Funktion oder zum Senden von Betriebszustandssignalen an den Regler verwendet werden. Als Beispiel kann eine Eingangs-/Ausgangsregelung für den Einsatz der Wärmerückgewinnungsfunktion dienen.

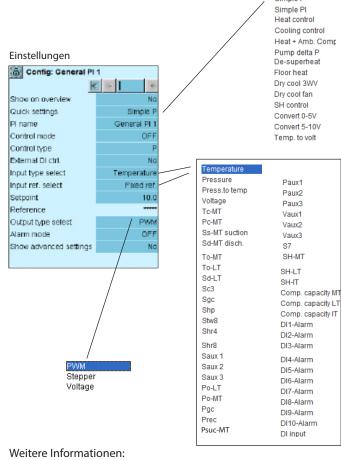
Signale können beispielsweise von Fühlern folgenden Typs empfangen werden:


- Temperaturfühler
- Druckmessumformer
- Sättigungstemperaturen
- Spannungssignale
- Interne Signale wie: Tc, Pc, Ss und Sd

Die Signale werden auf der nächsten Seite gezeigt.

Signale können gesendet werden an: Spannungssignale Ventile mit Schrittmotor PWM-Signale (pulsweitenmoduliert) für AKV-Ventil.

Die PI-Funktion ist umseitig dargestellt.


Allgemeines

Signal und Einstellwerte werden umgewandelt und als Prozentwert des Signals eingestellt.

Ein langsamer Prozess ist normalerweise nicht kritisch für die Einstellung von P- und I-Anteil. Wenn der Prozess allerdings schnell abläuft, ist mehr Sorgfalt bei der Einrichtung erforderlich.

Ein allgemeiner Abgleich kann wie folgt aussehen:

- · Mindest- und Höchsteinstellungen prüfen
- Integrationszeit erhöhen, damit diese nicht mit dem Abgleich verwechselt wird
- · Start-Kp verringern
- Prozess starten
- Kp einstellen, bis der Prozess zu schwanken beginnt und konstant schwankt
- Kp halbieren
- Tn verringern, bis der Prozess erneut zu schwanken beginnt
- · Tn verdoppeln

Anwendungshilfe. Blatt Nr. RA8AK.

5.10 Verschiedenes

Spannungsversorgung

Wenn die Spannungsversorgung von AK-PC 782B oder die Stufenmotorventile ausfallen, kann das System nicht regeln. Um ein ordnungsgemäßes Schließen des Ventils sicherzustellen, wird die Installation einer Notversorgung (USV) zumindest für die Ventilantriebe empfohlen. Ein Alarm kann nur dann ausgelöst werden, wenn das Basismodul ebenfalls an eine USV angeschlossen ist. Zur Fernüberwachung muss ein Relaisausgang in der USV an einen speziellen DI im Regler angeschlossen werden. Hierbei handelt es sich um eine reine Überwachungsfunktion, ohne zusätzliche Regelungsfunktion.

Hauptschalter

Der Hauptschalter wird verwendet, um die Reglerfunktion zu stoppen und zu starten.

Der Umschalter hat 2 Positionen:

- Normaler Regelzustand (Einstellung = EIN)
- Regelung gestoppt (Einstellung = AUS)

Darüber hinaus kann man auch einen Digitaleingang als externen Hauptschalter verwenden.

Ist der Umschalter oder der externe Hauptschalter auf AUS eingestellt, sind alle Funktionen des Reglers inaktiv und es wird ein Alarmsignal erzeugt, um darauf hinzuweisen – alle übrigen Alarmsignale entfallen.

Externer Schalter zum Stoppen von Verdichtern

Der Schalter stoppt die Verdichter, alle anderen Funktionen werden jedoch weiterhin geregelt.

Kältemittel

Nur für CO₂-Systeme.

Fühlerausfall

Fällt bei einem der angeschlossenen Temperaturfühler oder Druckmessumformer das Signal aus, wird Alarm gegeben.

- Bei PO-Störung wird bei Tagbetrieb mit 50 % und bei Nachtbetrieb mit 25 % Zuschaltung weitergeregelt jedoch mindestens mit einer Stufe.
- Bei Pc-Störung wird 100 % Verflüssigerleistung zugeschaltet, die Verdichterregelung verhält sich jedoch normal.
- Im Falle eines Prec-Fehlers verwendet die Regelung weiterhin den durchschnittlichen Wert "Vrec OD" der letzten sechs Stunden. Es erfolgt daraufhin eine Anpassung des Öffnungsgrads entsprechend der MT-Leistung.
- Bei Störung des Sd-Fühlers wird die Sicherheitsüberwachung der Druckgastemperatur unwirksam.
- Bei Störung des Ss-Fühlers wird die Überwachung der Saugleitungsüberhitzung unwirksam.
- Bei Störung des Außentemperaturfühlers Sc3 kann nicht mit variablem Verflüssigerdrucksollwert geregelt werden. Als Sollwert wird stattdessen der PC-ref-Min.-Wert benutzt.
- Bei Sgc-Fehlern werden weitere Anpassungen mithilfe des Shp-Signals durchgeführt.

Hinweis: Ein fehlerhafter Fühler muss 10 Min. lang OK sein, bevor der Fühleralarm deaktiviert wird.

Sicherheitstrennsignal

Eine unvorhergesehene Trennung des Verdichters, des Verflüssigungslüfters oder des Frequenzumrichters kann zu einem unerwarteten Temperaturanstieg im System führen. Erforderlichenfalls müssen die notwendigen Sicherheitssignale verwendet werden, damit der Regler Signale über Trennungen empfangen kann.

Fühlerkalibrierung

Das Eingangssignal aller angeschlossenen Fühler kann korrigiert werden. Eine Korrektur ist nur dann erforderlich, wenn das Kabel des Fühlers lang ist und einen kleinen Leitungsquerschnitt hat. Alle Anzeigen und Funktionen verwenden den korrigierten Wert.

Uhrfunktion

Der Regler hat eine Uhrfunktion.

Die Uhrfunktion wird nur für den Wechsel zwischen Tag/Nacht verwendet. Es müssen Jahr, Monat, Datum, Stunden und Minuten eingestellt werden.

Bei einem Ausfall der Spannungsversorgung wird die Zeiteinstellung für mindestens zwölf Stunden beibehalten.

Wenn der Regler an eine Installation mit einen AK Systemmanager angeschlossen ist, stellt dieser die Uhrfunktion automatisch neu ein.

Alarmmeldungen und Mitteilungen

Im Zusammenhang mit den Funktionen des Reglers gibt es eine Reihe von Alarmmeldungen und Mitteilungen, die bei Fehlern oder fehlerhafter Bedienung angezeigt werden.

Alarmverlauf

Der Regler umfasst ein Alarmprotokoll (Log), das alle aktiven sowie die letzten 40 Alarmsignale enthält. Im Alarmsignalprotokoll kann man sehen, wann der Alarm ausgelöst und wann er gestoppt wurde. Außerdem lässt sich die Priorität jedes Alarms ablesen, und wann der Alarm von welchem Benutzer quittiert wurde.

Priorität der Alarmsignale

Es wird zwischen wichtigen und weniger wichtigen Informationen unterschieden. Die Wichtigkeit – oder Priorität – ist für einige Alarmsignale festgelegt, während sie für andere nach Wunsch geändert werden kann (diese Änderung ist nur bei Anschluss der AK-ST Servicetool-Software an das System durchführbar, und die Einstellungen sind an jedem einzelnen Regler vorzunehmen).

Durch die Einstellung wird festgelegt, welche Sichtung / Aktion ausgeführt werden muss, wenn ein Alarmsignal eintrifft.

- "High" (Hoch) ist von höchster Bedeutung
- •"Log only" (Nur Protokoll) ist von niedrigster Bedeutung
- •"Interrupted" (Unterbrochen) erzeugt keine Aktion

Alarmrelais

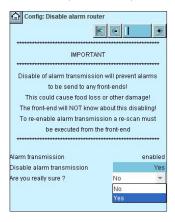
Darüber hinaus kann man wählen, ob man einen Alarmausgang am Regler als lokale Alarmsignalanzeige haben möchte. Für dieses Alarmrelais lässt sich definieren, auf welche Alarmsignalpriorität reagiert werden soll – es gibt folgende Auswahlmöglichkeiten:

- •"Non" (Kein) es wird kein Alarmsignalrelais benutzt
- •"High" (Hoch) Das Alarmsignalrelais wird nur bei Alarmsignalen mit hoher Priorität aktiviert
- •"Low High" (Niedrig-Hoch) Das Alarmsignalrelais wird bei Alarmsignalen mit "niedriger", "mittlerer" oder "hoher" Priorität aktiviert.

Der Zusammenhang zwischen der Priorität der Alarmsignale und der Aktion ergibt sich aus folgendem Schema.

Einstellung	Log	Alarmrelais			Senden	AKM-Ziel
		Kein	Hoch	Niedrig/	über	
				Hoch	Netzwerk	
Hoch	X		X	X	X	1
Mittel	Χ			X	X	2
Niedrig	Χ			X	Χ	3
Nur Log	Χ					4
Unter-						
brochen						

Quittieren einer Alarmmeldung


Wenn der Regler an ein Netzwerk mit System-Manager als Alarmempfänger angeschlossen ist, werden eingehende Alarmmeldungen automatisch quittiert.

Ist der Regler nicht an ein Netzwerk angeschlossen, muss der Benutzer alle Alarmsignale selbst quittieren.

Alarmübertragung

Die Alarmübertragung wird im Verbundregler aktiviert, wenn dieser an eine Überwachungseinheit mit aktivierter Alarmübertragung angeschlossen ist.

Die Alarmübertragung kann im Verbundregler deaktiviert werden: über das Konfigurationsmenü \to Systemeinstellung \to Alarmrouter deaktivieren (siehe Seite 50).

Wichtig zu wissen: Bei der Deaktivierung der Alarmübertragung wird kein Alarm vom Regler an die Überwachungseinheit gesendet. Fehlende Alarme können schwere Schäden an der Anlage und der zu kühlenden Ware verursachen.

Diese Funktion ist nur im erweiterten Benutzermodus aktiv und wird durch eine Konfigurationsverriegelung geschützt. Zudem gibt es eine 2-stufige Akzeptanzebene.

Diese Funktion verhindert nicht die Kommunikation des Verbundreglers mit der Überwachungseinheit. Sie deaktiviert nur das Senden der Alarme.

Um die Alarmübertragung wieder zu aktivieren, ist ein erneuter Scan oder die Betätigung des Service-Pins am Verbundregler erforderlich.

Hinweise: Der Service-Pin funktioniert nur mit SM350 und SM720.

Quittieren eines Alarms

Wenn der Regler an ein Netzwerk mit System-Manager als Alarmempfänger angeschlossen ist, quittiert dieser automatisch die Alarme, die an ihn gesendet werden. Ist die Alarmübertragung am Regler hingegen nicht aktiviert,

lst die Alarmübertragung am Regler hingegen nicht aktiviert, muss der Benutzer alle Alarme quittieren.

Alarm-Leuchtdiode

Die Alarm-Leuchtdiode an der Vorderseite des Reglers zeigt den Alarmzustand des Reglers an.

Blinken: Es liegt ein aktives oder ein noch nicht quittiertes Alarmsignal vor. Dauerlicht: Es liegt eine aktive Alarmmeldung vor, die bereits quittiert wurde. Kein Licht: Es liegen weder aktive Alarmmeldungen noch nicht quittierte Alarmsignale vor.

In-Betrieb-Relais

Die Funktion reserviert ein Relais, das bei normaler Regelung aktiviert ist. Das Relais wird freigegeben, wenn:

- die Regelung durch einen internen oder externen Hauptschalter gestoppt wird
- · der Regler ausfällt

IO-Status und manuell

Die Funktion wird im Zusammenhang mit Installation, Service und Fehlersuche an der Anlage benutzt.

Mithilfe dieser Funktion können die angeschlossenen Ausgänge überprüft werden.

Messungen

Hier kann der Status aller Ein- und Ausgänge abgelesen und überprüft werden.

Zwangssteuerung

Hierüber kann man eine Zwangssteuerung aller Ausgänge vornehmen, um zu überprüfen, ob sie korrekt angeschlossen sind.

Hinweis: Wenn die Ausgänge zwangsgesteuert werden, findet keine Überwachung statt.

Protokollierung/Registrierung von Parametern

Als ausgezeichnetes Instrument zur Dokumentation und Fehlersuche kann der Regler Parameterdaten protokollieren und sie in seinem internen Speicher ablegen.

Über die AK-ST 500 Servicetool-Software kann man:

- a) Bis zu 10 Parameterwerte wählen, die der Regler laufend erfassen soll
- b) Festlegen, wie oft diese Werte erfasst werden sollen

Der Regler hat einen begrenzten Speicher. Als Faustregel kann davon ausgegangen werden, dass er 10 Parameter speichern kann, die 2 Tage lang alle 10 Minuten erfasst werden.

Über AK-ST 500 lassen sich die historischen Werte anschließend in Form von Kurvendarstellungen anzeigen.

(Die Protokollfunktion setzt voraus, dass die Uhr gestellt wurde.)

Zwangssteuerung über ein Netzwerk

Der Regler verfügt über Einstellungen, die per Datenkommunikation über die Zwangssteuerungsfunktion der Systemeinheit bedient werden können.

Bei einer Änderungsanfrage über die Zwangssteuerungsfunktion werden alle angeschlossenen Regler des betreffenden Netzwerks gleichzeitig gestellt.

Es gibt die folgenden Optionen:

- · Wechsel zum Nachtbetrieb
- Zwangsschließung von Einspritzventilen (Injection ON)
- Optimierung des Saugdrucks (Po)

Bedienung von AKM / Service-Tool

Die Einstellung des Reglers kann nur über die AK-ST 500 Servicetool-Software vorgenommen werden. Die Bedienung wird im Installationshandbuch ("Fitters'On-site Guide") beschrieben.

Wenn der Regler in ein Netzwerk mit Systemeinheit eingebunden ist, kann die tägliche Reglerbedienung über die AKM-Systemsoftware erfolgen, d. h. die täglichen Anzeigen/Einstellungen können abgelesen und geändert werden.

Hinweis: Die AKM-Systemsoftware bietet nicht auf alle Konfigurationseinstellungen des Reglers Zugriff. Die verfügbaren Einstellungen/ Anzeigen werden im AKM-Bedienungsmenü aufgeführt (siehe auch Dokumentationsübersicht).

Berechtigung / Zugangscodes

Der Regler kann über Systemsoftware des Typs AKM und die Servicetool-Software AK-ST 500 bedient werden.

Beide Bedienmöglichkeiten erlauben den Zugriff auf mehrere Ebenen, je nach Benutzerberechtigung.

Systemsoftware des Typs AKM:

Die einzelnen Benutzer werden über ihre Initialen sowie Schlüsselwörter definiert. Danach erhalten sie auf genau die Funktionen Zugriff, für deren Bedienung ihnen die Berechtigung gewährt wurde. Die Bedienung wird im AKM-Handbuch beschrieben.

Servicetool-Software AK-ST 500:

Die Bedienung wird im Installationshandbuch (Fitters' On-site Guide) beschrieben.

Bei der Erstellung eines Benutzers sind folgende Eingaben erforderlich:

- a) Benutzername
- b) Zugangscode (Kennwort)
- c) Definition der Benutzerebene
- d) Auswahl der Maßeinheiten entweder US (z. B. °F und PSI) oder Danfoss SI (°C und Bar)
- e) Auswahl der Sprache

Es stehen vier Benutzerebenen zur Verfügung:

- DFLT Default user Zugang ohne Code/Kennwort
 Anzeige alltäglicher Einstellungen und Ablesen von Werten.
- Daily täglicher Benutzer Einstellen ausgewählter Funktionen und Alarmquittierung.
- SERV Service-Benutzer
 Zugriff auf alle Einstellungen im Menüsystem außer der Einrichtung neuer Benutzer.
- SUPV Supervisor Zugriff auf alle Einstellungen einschließlich der Erstellung neuer Benutzer.

Anzeige des Saugdrucks und Verflüssigungsdrucks

An den Regler können bis zu vier separate Displays angeschlossen werden. Der Anschluss erfolgt über Leitungen mit Steckverbindern. Das Display kann z. B. in einer Schalttafelfront angebracht werden.

Ist ein Display angeschlossen, wird darauf der Wert gemäß Einrichtung angezeigt. Dies kann sein:

Verdichter-Regelungsfühler

P0 in Temperatur, MT, LT

PO in har MT IT

P0 in bar, MT, LT

Ss, MT, LT, IT

Sd, MT, LT, IT

Verflüssiger-Regelungsfühler

Tc. MT

Pc bar, MT

S7

Sgc

Pgc bar

Prec bar

Trec

Verdichterdrehzahl, MT, LT, IT

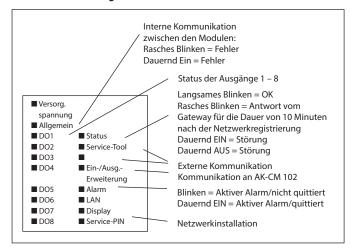
Display	Primäre Auslesung *	Sekundäre Auslesung
Α	Regelungsfühler Saugdruck	Zugeschaltete Leistung MT
В	Regelungsfühler Verflüssiger	Zugeschaltete Leistung LT
С	Ss	Zugeschaltete Leistung IT
D	Sd	Öffnungsgrad

^{*} Für die Primäranzeige können ggf. andere Maßeinheiten ausgewählt werden.

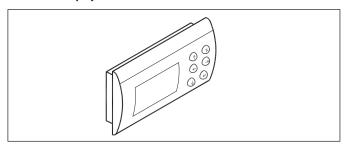
Bei Wahl eines Displays mit Bedientasten (an Stecker A) können neben der Anzeige des Saugdrucks und Verflüssigungsdrucks über ein Menüsystem einfache Bedienungsschritte durchgeführt werden:

Anzahl	Funktion
o57	Verflüssiger-Leistungseinstellungen 0: MAN, 1: AUS, 2: AUTO
058	Manuelle Einstellung der Verflüssigerleistung
o59	Leistungseinstellung der Sauggruppe MT 0: MAN, 1: AUS, 2: AUTO
060	Manuelle Einstellung der Saugdruckleistung, MT-Kreis
h15	Hochdruck. Einstellung von Pgc-Minimum
h16	Hochdruck. Einstellung des HD-Regelungsbetriebs: Automatisch / Manuell
h17	Hochdruck. Manueller Betrieb. Einstellung des Ventilöffnungsgrads
h18	Wärmerückgewinnung. Referenzwert für Shr8-Temperatur
h19	Wärmerückgewinnung. Einstellung der Wärmerückgewinnungs- Regelungsart: Automatisch / AUS
P62	Manuelle Einstellung der Saugdruckleistung, LT-Kreis
P63	Leistungseinstellung der Sauggruppe LT 0: MAN, 1: AUS, 2: AUTO
r12	Hauptschalter 0: Regler gestoppt 1: Regelung
r23	Saugdruck-Sollwert MT-Kreis Einstellung des erforderlichen Saugdruck-Referenzwerts in °C
r24	Saugdruck-Referenzwert MT-Kreis Aktuelle Referenztemperatur für Verdichterleistung
r28	Verflüssiger-Sollwert Einstellung des gewünschten Verflüssigerdrucks in °C
r29	Verflüssigerreferenzwert Aktuelle Referenztemperatur für Verflüssigerleistung
r57	Po MT Verdampferdruck in °C
r86	Sammlerregelung. Referenzwert für Prec
r87	Sammlerregelung. Einstellung der Sammler-Regelungsart: Automatisch / Manuell
r88	Sammlerregelung. Manueller Betrieb. Einstellung der Ventilöffnungsgrade
r90	Po LT Verdampferdruck in °C
r91	Saugdruck-Referenzwert LT-Kreis Aktuelle Referenztemperatur für Verdichterleistung

Kreis rlichen Saugdruck-Referenzwerts in °C zwert für Stw8-Temperatur ung der Regelungsart für heißes Wasser: gleitung MT-Kreis n °C tus am Verflüssiger rausgeschaltet oder manuell ausgeschaltet) aft, Lüfter laufen nicht) n) gerleistung in % ssigerleistung in % tus an Sauggruppe MT Jormale Pl-Regelung der Verdichterleistung) erdichterleistung kann wegen einer cht erhöht werden) lichterleistung kann wegen der Mindestlaufzeit en) : (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) ein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters, zugeschaltet werden)
zwert für Stw8-Temperatur Ing der Regelungsart für heißes Wasser: gleitung MT-Kreis n°C tus am Verflüssiger r ausgeschaltet oder manuell ausgeschaltet) aft, Lüfter laufen nicht) n) gerleistung in % ssigerleistung in % tus an Sauggruppe MT Jormale PI-Regelung der Verdichterleistung) erdichterleistung kann wegen einer cht erhöht werden) lichterleistung kann wegen der Mindestlaufzeit en) i (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) ein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
gleitung MT-Kreis n °C tus am Verflüssiger r ausgeschaltet oder manuell ausgeschaltet) aft, Lüfter laufen nicht) n) gerleistung in % ssigerleistung in % tus am Sauggruppe MT Jormale PI-Regelung der Verdichterleistung) erdichterleistung kann wegen einer the erhöht werden) lichterleistung kann wegen der Mindestlaufzeit en) t (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) lein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
gleitung MT-Kreis n°C tus am Verflüssiger r ausgeschaltet oder manuell ausgeschaltet) aft, Lüfter laufen nicht) n) gerleistung in % ssigerleistung in % tus an Sauggruppe MT Jormale PI-Regelung der Verdichterleistung) erdichterleistung kann wegen einer cht erhöht werden) lichterleistung kann wegen der Mindestlaufzeit en) ((Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) lein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
n °C tus am Verflüssiger r ausgeschaltet oder manuell ausgeschaltet) aft, Lüfter laufen nicht) n) gerleistung in % ssigerleistung in % tus an Sauggruppe MT dormale Pl-Regelung der Verdichterleistung) erdichterleistung kann wegen einer tht erhöht werden) dichterleistung kann wegen der Mindestlaufzeit en) (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) tein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
n °C tus am Verflüssiger r ausgeschaltet oder manuell ausgeschaltet) aft, Lüfter laufen nicht) n) gerleistung in % ssigerleistung in % tus an Sauggruppe MT dormale Pl-Regelung der Verdichterleistung) erdichterleistung kann wegen einer tht erhöht werden) dichterleistung kann wegen der Mindestlaufzeit en) (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) tein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
tus am Verflüssiger r ausgeschaltet oder manuell ausgeschaltet) aft, Lüfter laufen nicht) n) gerleistung in % ssigerleistung in % tus an Sauggruppe MT lormale Pl-Regelung der Verdichterleistung) erdichterleistung kann wegen einer cht erhöht werden) lichterleistung kann wegen der Mindestlaufzeit ein) c: (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) sein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK-
r ausgeschaltet oder manuell ausgeschaltet) aft, Lüfter laufen nicht) n) gerleistung in % ssigerleistung in % tus an Sauggruppe MT lormale Pl-Regelung der Verdichterleistung) erdichterleistung kann wegen einer cht erhöht werden) lichterleistung kann wegen der Mindestlaufzeit eriore (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) ein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
aft, Lüfter laufen nicht) n) gerleistung in % ssigerleistung in % tus an Sauggruppe MT Jormale PI-Regelung der Verdichterleistung) erdichterleistung kann wegen einer cht erhöht werden) lichterleistung kann wegen der Mindestlaufzeit en) (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) tein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
n) gerleistung in % ssigerleistung in % tus an Sauggruppe MT Jormale PI-Regelung der Verdichterleistung) erdichterleistung kann wegen einer cht erhöht werden) lichterleistung kann wegen der Mindestlaufzeit en) (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) lein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
gerleistung in % ssigerleistung in % tus an Sauggruppe MT tormale Pl-Regelung der Verdichterleistung) erdichterleistung kann wegen einer cht erhöht werden) lichterleistung kann wegen der Mindestlaufzeit en) (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) ein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
ssigerleistung in % tus an Sauggruppe MT Jormale PI-Regelung der Verdichterleistung) erdichterleistung kann wegen einer cht erhöht werden) lichterleistung kann wegen der Mindestlaufzeit en) (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) ein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
tus an Sauggruppe MT Jormale PI-Regelung der Verdichterleistung) erdichterleistung kann wegen einer cht erhöht werden) lichterleistung kann wegen der Mindestlaufzeit en) (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) ein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
Normale PI-Regelung der Verdichterleistung) erdichterleistung kann wegen einer cht erhöht werden) lichterleistung kann wegen der Mindestlaufzeit en) (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) ein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
erdichterleistung kann wegen einer cht erhöht werden) lichterleistung kann wegen der Mindestlaufzeit ein in i
cht erhöht werden) lichterleistung kann wegen der Mindestlaufzeit en) (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) ein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
lichterleistung kann wegen der Mindestlaufzeit in) (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) ein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
en) (Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) ein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
(Verdichterleistung kann wegen der oder Mindeststillstandzeit nicht erhöht werden) ein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
oder Mindeststillstandzeit nicht erhöht werden) ein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
ein Umschalten des Verdichters innerhalb der EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK-rung (anfängliche Laufzeit des ersten Verdichters,
EIN (Verzögerung nach Aktivierung des en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
en auf Freigabesignal von NK, bei TK- rung (anfängliche Laufzeit des ersten Verdichters,
rung (anfängliche Laufzeit des ersten Verdichters,
rung (anfängliche Laufzeit des ersten Verdichters,
zugeschaltet werden)
. To the contract of the contr
te Verdichter kann erst dann ausgeschaltet
mp-down-Grenzwert erreicht wurde)
hter laufen wegen eines Fühlerfehlers im
begrenzte Verdichterleistung wegen einer
astabwurf) e Verringerung der Verdichterleistung wegen einer
peratur)
e Verringerung der Verdichterleistung wegen eines
sdrucks)
(gewünschte Verdichterleistung manuell
(gewansente verdichteneistung manden
ist ausgeschaltet)
iter (wartet auf eine Mindestverzögerung, bevor
(5 Sekunden))
ise Verringerung der Verdichterleistung wegen
rdrucks)
a. Verdi. ist/sind ausgeschaltet, Sammlerdruck wird
teuert)
erleistung in % MT-Kreis
Chterleistung MT-Kreis
r in °C MT-Kreis
in °C MT-Kreis
r S7 Medienfühler
Ingsdruck in °C
\ \%" LT-Kreis
o %" LT-Kreis
atus" LT-Kreis
reis
reis
Kreis
Kreis


Hinweis: Die Koolcode-App, die die Parameterliste und Alarm-/ Statusangaben zeigt, kann kostenlos über den App-Store und Google Play heruntergeladen werden.

Soll ein Wert unter "Funktion" angezeigt werden, sind die Tasten ist wie folgt zu verwenden:


- 1. Die obere Taste drücken, bis ein Parameter angezeigt wird.
- Durch Drücken der oberen oder unteren Taste den Parameter ansteuern, der abgelesen werden soll.
- Die mittlere Taste gedrückt halten, bis der Wert des Parameters angezeigt wird.
 Nach kurzer Zeit kehrt das Display automatisch zur "Ableseanzeige" zurück.

Leuchtdioden am Regler

Grafisches Display MMIGRS2

Über das Display ist der Zugriff auf einen Großteil der Reglerfunktionen möglich.

Um Zugriff zu erhalten, das Display an den Regler anschließen und die Adresse auf dem MMIGRS2 aktivieren. (Es **muss keine** separate Spannungsversorgung angeschlossen werden.) Das Display wird über das Kabel direkt vom Regler mit Spannung versorgt.

Einstellung:

- 1. Halten Sie die Tasten "x" und "Enter" fünf Sekunden lang gedrückt. Das BIOS-Menü wird angezeigt.
- 2. Wählen Sie die Zeile "MCX-Auswahl" aus und betätigen Sie die "Enter"-Taste.
- 3. Wählen Sie die Zeile "Man. Auswahl" aus und betätigen Sie die "Enter"-Taste.
- 4. Die Adresse wird angezeigt. Prüfen Sie, ob "001" angezeigt wird. Wenn ja, drücken Sie die "Enter"-Taste. Die Daten werden dann vom Regler übermittelt.

(Wenn Sie sich mithilfe des Service-Tools angemeldet haben, ist am MMIGRS2 keine Anmeldung mehr möglich und umgekehrt. Nur der erste angemeldete Benutzer verfügt über die Zugriffsrechte der Bedienerebene.)

Ventileinstellung

Wenn Vrec an einen analogen Ausgang angeschlossen ist, kann im Dropdown-Menü ein ICM-, CCM- oder CCMT-Ventil ausgewählt werden.

Wenn das angeschlossene Ventil nicht in der Liste ausgewählt werden kann, müssen Kv und Durchfluss auf den Wert 50 eingestellt werden. Siehe Beschreibung unter Schrittmotorventile zur korrekten Einstellung der Werte.

Schrittmotorventile

Bei der Auswahl eines Ventils für einen Danfoss-Schrittmotor sind alle Einstellungen werkseitig vorgegeben. Hier muss nur der Ventiltyp ausgewählt werden.

Bei Verwendung eines Ventils von einem anderen Hersteller müssen die folgenden Einstellungen vorgenommen werden. Die entsprechenden Daten sind vom Ventilhersteller zu erfragen:

Max. Betriebsschritte

Die Zahl der Schritte, die einer Ventilposition von 100 % entspricht. Dieser Wert muss im Bereich zwischen 0 und 10.000 Schritten liegen.

Hysterese

Die Anzahl der für die Korrektur mechanischer Hysterese benötigten Schritte, wenn ein Untersetzungsgetriebe Teil der Ventilkonstruktion ist. Diese Einstellung wird nur angewendet, wenn eine zusätzliche Öffnung des Ventils erforderlich ist.

Ist dies der Fall, öffnet sich das Ventil zusätzlich um diesen Wert. Anschließend wird das Ventil um diesen gleichen Wert geschlossen. Dieser Wert muss im Bereich zwischen 0 und 127 Schritten liegen.

Schrittfrequenz

Die gewünschte Ventilantriebsgeschwindigkeit in Schritten pro Sekunde. Dieser Wert muss im Bereich zwischen 20 und 500 Schritten/s liegen.

Haltestrom

Der Prozentwert des programmierten Maximalphasenstroms, der an jeder Phase des Schrittmotorausgangs angelegt sein sollte, wenn es sich um ein stationäres Ventil handelt. Bei Bedarf ermöglicht dieser Strom, dass das Ventil seine zuletzt programmierte Position beibehält. Dieser Wert muss im Bereich zwischen 0 und 70 % liegen und in Schritten von 10 % angegeben werden.

Übersteuerung bei Ventil Init

Der Betrag zum Übersteuern des Ventils unter die 0%-Position während der Ventilinitialisierung, um zu gewährleisten, dass das Ventil vollständig geschlossen ist. Dieser Wert muss im Bereich zwischen 0 und 31 % liegen.

Phasenstrom

Der Phasenstrom, der während der eigentlichen Ventilbewegung an jede Phase des Schrittmotors angelegt wird, kann im Bereich von 0 bis 325 mA eingestellt werden.

Der Wert des Phasenstroms wird in RMS angegeben. Beachten Sie, dass einige Ventilhersteller im Datenblatt Spitzenströme verwenden (multiplizieren Sie den Spitzenstrom mit dem Faktor 0,71, um ihn in den RMS-Wert umzurechnen).

(**Hinweis:** Der tatsächliche Phasenstrom kann aufgrund der Auflösung des Schrittmotortreibers höher sein.)

Sanfter Start nach Ventil Init

Bei eingeschaltetem Strom führt das Ventil eine Ventilinitialisierung durch, d. h. das Ventil schließt mit "Max. Betriebsschritten" und mit "Übersteuerung bei Ventil Init"-Schritten, um eine Nullpunkt-Kalibrierung des Systems durchzuführen. Danach wird ein "Sanfter Start nach Ventil Init" durchgeführt, um die Schließkraft auf dem Ventilsitz mit einigen Öffnungsschritten gemäß "Hysterese" oder mit mindestens 20 Schritten zu verringern.

Störungssichere Position

Für den störungssicheren Betrieb (z.B. bei Verlust der Kommunikation mit dem Modul) wird die Standard-Ventilposition angegeben. Dieser Wert muss im Bereich zwischen 0 und 100 % liegen.

Kv (nur Vrec)

Kv ist der maximale Volumenstrom des Ventils in m^3/h , der im Datenblatt des Ventils abgelesen werden kann.

Durchfluss bei 50 % (nur Vrec)

Der relative Volumenstrom "Durchfluss bei 50 %" muss aus der Kennlinie im Ventildatenblatt abgelesen und im Ventilkonfigurationsmenü eingegeben werden

Ein Beispiel für das Ablesen des Durchflusses bei $50\,\%$ ist auf Seite 122 dargestellt.

5.11 KPI- und COP-Berechnung

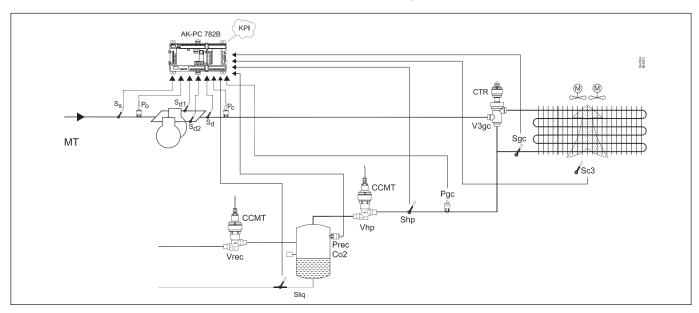
Prinzip

Der Regler kann die primären KPI-Parameter (Key Performance Indicator) berechnen und eine Schätzung der Effizienz des Verbundes liefern (z. B. Leistungszahl, COP). Diese werden für jeden Verbund (NK, TK, PV) berechnet und spiegeln die Effizienz bei der Bereitstellung von Kühlung auf den entsprechenden Ansaugdruckniveaus wider.

Die Werte für KPI und COP werden so berechnet, als ob die Anlage aus drei einstufigen Kühlkreisen besteht: NK, TK und PV. TK kühlt auf der TK-Ebene und gibt Wärme auf der NK-Ebene ab (siehe detaillierte Beschreibungen in den KPI des TK-Verbundes). PV arbeitet als einzelne Stufe parallel zu NK, wodurch die von NK zu liefernde Kühlleistung reduziert wird. Die relativ geringe Anzahl an Fühlern und Verdichterstatus, die für die einzelnen Verbund-KPI verwendet werden, erleichtern die Überprüfung der Einstellungen bei der Inbetriebnahme der Anlage und bei der Fehlersuche im System (siehe Details zu den einzelnen Verbund-KPIs). Es werden Schätzungen für die Kühlleistung, die Verdichterleistung und die abgeführte Wärme angegeben.

Hinweis: Der COP-Wert hängt von den Betriebsbedingungen ab und ist eine Echtzeit-Einschätzung der Effizienz der gerade herrschenden Bedingungen. Wenn über den System-Manager eine Verbindung zur "Danfoss Cloud" hergestellt wird, stehen weitere KPI zur Verfügung. Die Cloud ermöglicht die Normalisierung der Leistungsdaten und damit das Benchmarking zwischen verschiedenen Supermärkten. Dies ermöglicht den Vergleich verschiedener Verbundanwendungen, z. B. mit oder ohne Multi-Ejektoren. Diese zusätzlichen KPI sind hier nicht dokumentiert.

Vorbedingungen

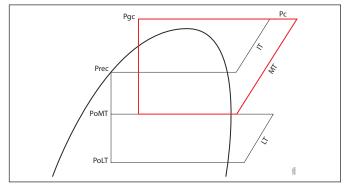

- · Regelung von Verbund und Gaskühler.
- Die Wärmerückgewinnung wird bei der Berechnung nicht berücksichtigt.
- Nicht g

 ültig, wenn die NK-Saugdruckregelung zwischen zwei Druckumschaltern wechselt (Ps und Psuc: typische Verwendung mit Niederdruck-Multi-Ejektoren).
- Es ist nur der variable Referenzmodus für den Gaskühler (mit Außenlufttemperatur) möglich.
- Als zusätzlich installierter Wärmeübertrager nach dem Gaskühler kommt nur ein interner Wärmeübertrager in Frage (keine externe Unterkühlung).
- Eine Enthitzung wird nicht geboten.
- Betrieb von (Schrauben-)Verdichter mit Economizer ist nicht vorgesehen.
- · Es ist keine Zwangskühlung von Verdichtern möglich.

Heißgastemperaturfühler

Diese Fühler werden in der Regel zum Zweck der Verdichter- und Anlagensicherheit verwendet. Eine hohe Genauigkeit ist in der Regel nicht erforderlich. Bei der Verwendung für die KPI- und die COP-Berechnung wird die Genauigkeit der Messungen entscheidend, aus diesem Grund gilt Folgendes:

- Es werden dringend Heißgastemperaturfühler für jeden Verdichter empfohlen, da sie genauer sind als ein gemeinsamer Fühler.
- Wenn ein gemeinsamer Heißgastemperaturfühler verwendet wird, muss dieser in der Nähe der Verdichter platziert werden und die Leitung darf nicht mit anderen Verbunden geteilt werden. Ist dies aufgrund der Anlagenkonfiguration nicht möglich, so sind separate Heißgasfühler erforderlich.
- Alle Heißgasrohre und -fühler müssen isoliert sein.



KPI des NK-Verbundes

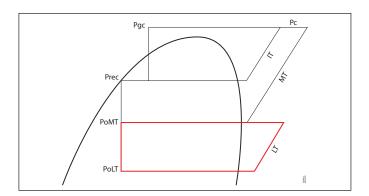
Der COP-Wert gibt Auskunft darüber, wie effizient der NK-Verbund für den einstufigen Zyklus arbeitet, wie in der Abbildung unten dargestellt.

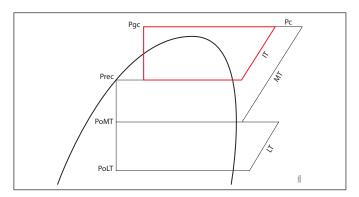
Die "Kühlleistung" ist die von den NK-Verdichtern erzeugte Kühlwirkung. Dazu gehört auch die Abkühlung des Heißgases von den TK-Verdichtern. "Wärmeabgabe" ist die Wärme, die aus dem NK-Heißgas abgeführt wird.

Die folgenden Fühler müssen konfiguriert sein und messen realistische Anlagenzustände: Ss, Ps, Sd (alle für NK-Verbunde) und Pc, Pgc, Sc3, Shp (Sgc für Konfiguration ohne Shp-Fühler).

KPI der TK-Verbund

Der COP-Wert gibt Auskunft darüber, wie effizient der TK-Verbund für den einstufigen Zyklus arbeitet, wie in der Abbildung unten dargestellt. Die "Kühlleistung" ist die Kühlwirkung des TK-Verbundes (PsTK). Die "Wärmeabgabe" entspricht der Wärme, die der TK-Verbund zur NK-Last beiträgt, indem sie das Heißgas von den TK-Verdichtern in Hochdruckflüssigkeit abkühlt.


Die folgenden Fühler müssen konfiguriert sein und messen realistische Anlagenzustände: Ss, Ps, Sd (alle für TK-Verbund) und Prec, PsNK. Für höchste Genauigkeit wird empfohlen, einen Sliq-Fühler an der Flüssigkeitsleitung hinter dem Sammler zu montieren, insbesondere wenn ein interner Wärmeübertrager zur Unterkühlung der Flüssigkeit verwendet wird.


KPI des PV-Verbundes

Der COP-Wert gibt Auskunft darüber, wie effizient der PV-Verbund für den einstufigen Kreis arbeitet, wie in der Abbildung unten dargestellt. Die "Kühlleistung" ist die von den PV-Verdichtern bei Prec-Druckniveau erzeugte Kühlwirkung.

Diese nimmt zu, wenn die PV-Verdichter oder Dampfejektoren verwendet werden, da diese die Last von den NK-Verdichtern auf die PV-Verdichter verlagern.

"Wärmeabgabe" ist die Wärme, die aus dem PV-Heißgas abgeführt wird. Die folgenden Fühler müssen konfiguriert sein und messen realistische Anlagenzustände: Ss, Sd (alle für PV-Verbund), Prec, Pc, Pgc, Sc3, Shp (Sgc für Konfiguration ohne Shp-Fühler).

Einstellungen und Anzeigen der KPI:

Geschätzte KPIs

Die Häufigkeit einstellen, mit der die KPI-Berechnung bildlich dargestellt werden soll. Folgende Optionen stehen zur Verfügung:

- Aktuell: fortlaufend aktualisiert. Es kann ca. 10 bis 15 Minuten dauern, bis Schwankungen im System zu erkennen sind.
- Stündlich: Durchschnitt der vorausgegangenen Stunde
- Täglich: Durchschnitt des vorausgegangenen Tags

KPI-Status (Gültigkeit)

Bei Auswahl der Ansicht "Laufend" kann hier abgelesen werden, ob die berechneten KPIs als gültig eingestuft werden oder nicht. Aufgrund dynamischer Systemerscheinungen wie Systemstart und -abschaltung sowie ungültiger Fühlermesswerte können zu niedrige oder zu hohe Leistungsdaten ungültige Berechnungen zur Folge haben.

Bei Auswahl der Ansicht "Stündlich" oder "Täglich" wird der Prozentwert der gültigen Datenproben der vorangegangenen Stunde bzw. des vorangegangenen Tags angezeigt. Liegt dieser Prozentwert unter 30 %, sind die Daten generell nicht verlässlich. Bei einem gut eingerichteten System ist mit Gültigkeitswerten von 80 bis 95 % zu rechnen.

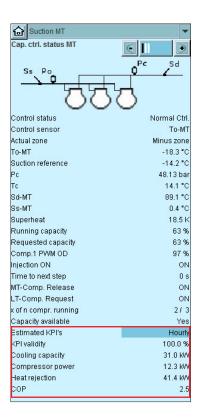
Kühlleistung

Geschätzte Kälteleistung bei Saugdruck

Verdichterleistungsaufnahme

Schätzung der Leistungsaufnahme des Verdichters

Wärmeabgabe


Schätzung der bei Heißgasdruckniveau abgegebenen Wärme (Energie).

COF

Geschätzter COP (Co-efficiency of Performance, Leistungszahl) der Verdichter. Die Berechnung erfolgt anhand des Verhältnisses zwischen der bereitgestellten Energie (Kühlleistung) und der verbrauchten Energie (Verdichter-Stromversorgung).

Überprüfung der Installation

- Stellen Sie für jeden Verbund sicher, dass alle relevanten Fühler angeschlossen, korrekt platziert und isoliert sind.
- Überprüfen Sie, ob Verdichter im Betrieb entsprechend nacheinander ein- und ausschalten können. Die Einstellung kann nicht mit einem sich nicht in Betrieb befindlichen Verbund überprüft werden.
- Überprüfen Sie, ob der KPI-Status 5 bis 10 Minuten nach dem Einschalten der Verdichter "Gültig" anzeigt.
- Lassen Sie den Verbund 2 bis 3 Stunden lang mit ausreichender Last laufen und stellen Sie dann sicher, dass der Wert des Parameters "KPI Gültigkeit" (stündlich) hoch ist (80 bis 100 %).

5.12 Anhang A – Verdichterkombinationen und Schaltprinzip

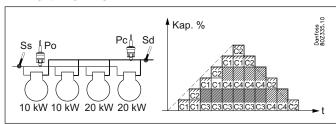
In diesem Abschnitt werden Verdichterkombinationen und zugehörige Schaltprinzipien näher beschrieben.

Verdichteranwendung 1 - eine Stufe

Der Leistungsverteiler kann bis zu 10 einstufige Verdichter nach folgendem Schaltprinzip bewältigen:

- Zyklusbetrieb
- Best-Fit

Zyklusbetrieb - Beispiel


In diesem Fall haben alle Verdichter die gleiche Größe und werden nach dem Prinzip "First In First Out" (FIFO) zu- und abgeschaltet, um einen Betriebsstundenausgleich zu gewährleisten.

- Es findet ein Betriebszeitausgleich zwischen allen Verdichtern statt.
- Der Verdichter mit den wenigsten Betriebsstunden wird als erster gestartet.
- Der Verdichter mit den meisten Betriebsstunden wird als erster gestoppt.

Best-Fit - Beispiel

In diesem Fall kommen mindestens zwei Verdichter unterschiedlicher Größe zum Einsatz. Der Leistungsverteiler schaltet die Verdichter zu und ab, um die bestmögliche Leistungsanpassung (möglichst wenig Leistungssprünge) zu gewährleisten.

- Es findet ein Betriebszeitausgleich zwischen Verdichter 1 und 2 statt (gleiche Größe im Beispiel).
- Es findet ein Betriebszeitausgleich zwischen Verdichter 3 und 4 statt (gleiche Größe im Beispiel).

Verdichteranwendung 2 – 1 × Entlastung + Einstufen-Verdichter

Der Regler kann eine Kombination aus einem leistungsgeregelten und mehreren Einstufen-Verdichtern steuern. Der Vorteil dieser Kombination ist, dass die Entlastungsventile zum Ausgleich von Leistungsabfällen verwendet werden. Dadurch erreicht man viele Leistungsstufen über wenige Verdichter.

Voraussetzungen für die Nutzung dieser Verdichteranwendung:

- · Alle Verdichter müssen dieselbe Größe haben
- Der leistungsgeregelte Verdichter kann bis zu drei Entlastungsventile haben
- Die Hauptstufe kann eine andere Größe als die Entlastungsventile aufweisen, z. B. 50 %, 25 % und 25 %.

Diese Verdichterkombination arbeitet nach folgendem Schaltprinzip:

· Zyklisch

Allgemeines zur Handhabung:

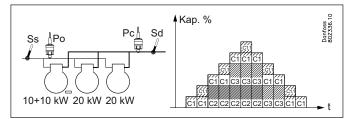
Zuschaltung

Leistungsgeregelte Verdichter mit Entlastungsventilen werden immer vor Einstufen-Verdichtern gestartet. Der leistungsgeregelte Verdichter wird immer voll belastet, bevor nachfolgende Einstufen-Verdichter zugeschaltet werden.

Abschaltung

Der leistungsgeregelte Verdichter wird immer als letzter gestoppt. Der leistungsgeregelte Verdichter wird immer vollentlastet, bevor nachfolgende Einstufen-Verdichter zugeschaltet werden.

Entlastungsventile


Bei Zyklusbetrieb werden Entlastungsventile dazu verwendet, Leistungsabfälle nachfolgender Einstufen-Verdichter auszugleichen.

Wiedereinschaltsperre

Kann der leistungsgeregelte Verdichter aufgrund einer Wiedereinschaltsperre nicht starten, wird der Start von evtl. nachfolgenden Einstufen-Verdichtern nicht zugelassen. Der leistungsgeregelte Verdichter startet, wenn die Wiedereinschaltsperre abgelaufen ist.

Zyklusbetrieb – Beispiel

Die einstufigen Verdichter werden nach dem Prinzip "First In First Out" (FIFO) zu- und abgeschaltet, um einen Betriebsstundenausgleich zwischen den Verdichtern zu gewährleisten.

- Der leistungsgeregelte Verdichter wird immer als erster gestartet und als letzter gestoppt.
- Das Entlastungsventil wird dazu verwendet, Leistungsabfälle auszugleichen.
- Bei Zyklusbetrieb findet ein Betriebszeitausgleich zwischen Verdichter 2 und 3 statt (gleiche Größe im Beispiel).

Verdichteranwendung 3 – 2 × Entlastung + Einstufen-Verdichter

Der Regler kann eine Kombination aus leistungsgeregelten und mehreren Einstufen-Verdichtern steuern. Der Vorteil dieser Kombination besteht darin, dass die Entlastungsventile zum Ausgleich von Leistungsabfällen verwendet werden. Dadurch erreicht man viele Leistungsstufen über wenige Verdichter.

Voraussetzungen für die Nutzung dieser Verdichteranwendung:

- · Alle Verdichter müssen dieselbe Größe haben
- Die leistungsgeregelten Verdichter müssen dieselbe Anzahl Entlastungsventile haben (max. 3).
- Die Hauptstufe der leistungsgeregelten Verdichter hat dieselbe Größe.
- Die Hauptstufe kann eine andere Größe als die Entlastungsventile aufweisen, z. B. 50 %, 25 % und 25 %.

Diese Verdichterkombination arbeitet nach folgendem Schaltprinzip:

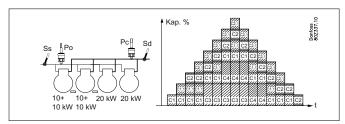
Zyklisch

Allgemeines zur Handhabung der leistungsgeregelten Verdichter: Zuschaltung

Leistungsgeregelte Verdichter mit Entlastungsventilen werden immer vor Einstufen-Verdichtern gestartet. Der leistungsgeregelte Verdichter wird immer voll belastet, bevor nachfolgende Einstufen-Verdichter zugeschaltet werden.

Abschaltung

Der leistungsgeregelte Verdichter wird immer als letzter gestoppt. Wie die Entlastungsventile arbeiten, hängt von der Einstellung "unloader ctrl mode" ab.


Entlastungsventile

Bei Zyklusbetrieb werden Entlastungsventile dazu verwendet, Leistungsabfälle nachfolgender Einstufen-Verdichter auszugleichen. Wiedereinschaltsperre

Kann ein leistungsgeregelter Verdichter aufgrund einer Wiedereinschaltsperre nicht starten, wird der Start von evtl. nachfolgenden Einstufen-Verdichtern nicht zugelassen. Der leistungsgeregelte Verdichter startet, wenn die Wiedereinschaltsperre abgelaufen ist.

Zyklusbetrieb – Beispiel

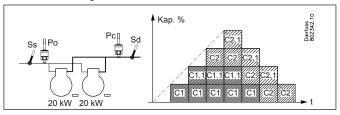
Die einstufigen Verdichter werden nach dem Prinzip "First In First Out" (FIFO) zu- und abgeschaltet, um einen Betriebsstundenausgleich zwischen den Verdichtern zu gewährleisten.

- Der leistungsgeregelte Verdichter wird immer als erster gestartet und als letzter gestoppt.
- Es findet ein Betriebszeitausgleich zwischen den leistungsgeregelten Verdichtern statt.
- Das Entlastungsventil an den leistungsgeregelten Verdichtern wird dazu verwendet, Leistungsabfälle auszugleichen.
- Es findet ein Betriebszeitausgleich zwischen den Einstufen-Verdichtern 3 und 4 statt.

Verdichteranwendung 4 - Nur leistungsgeregelte Verdichter

Der Regler ist in der Lage, leistungsgeregelte Hubkolben-Verdichter gleicher Größe mit bis zu 3 Entlastungsventilen zu regeln.

Voraussetzungen für die Nutzung dieser Verdichteranwendung:


- · Alle Verdichter müssen dieselbe Größe haben
- Die leistungsgeregelten Verdichter müssen dieselbe Anzahl Entlastungsventile haben (max. 3).
- Die Hauptstufe der leistungsgeregelten Verdichter hat dieselbe Größe.
- Die Hauptstufe kann eine andere Größe als die Entlastungsventile aufweisen, z. B. 50 %, 25 % und 25 %.

Diese Verdichterkombination arbeitet nach folgendem Schaltprinzip:

Zyklisch

Zyklusbetrieb – Beispiel

Die Verdichter werden nach dem Prinzip "First In First Out" (FIFO) zu- und abgeschaltet, um einen Betriebsstundenausgleich zwischen den Verdichtern zu gewährleisten.

- Bei Zyklusbetrieb wird der Verdichter mit der geringsten Laufzeit (C1) zuerst gestartet.
- Erst wenn Verdichter C1 voll belastet ist, wird Verdichter C2 zugeschaltet.
- Beim Abschalten wird der Verdichter mit den meisten Betriebsstunden als erster entlastet (C1).
- Wenn dieser Verdichter vollständig entlastet ist, wird der zweite
 Verdichter mit einer Stufe entlastet, bevor die Hauptstufe des vollständig entlasteten Verdichters (C1) abgeschaltet wird

Verdichteranwendung 5 – 1 × Drehzahlregelung + Einstufen-Verdichter

Der Regler ist in der Lage, einen drehzahlgeregelten Verdichter zu betreiben, der mit einstufigen Verdichtern gleicher bzw. unterschiedlicher Größen kombiniert wird.

Voraussetzungen für die Nutzung dieser Verdichteranwendung:

- Ein drehzahlgeregelter Verdichter, der eine andere Größe als die nachfolgenden einstufigen Verdichter aufweisen kann.
- Bis zu 3 einstufige Verdichter gleicher oder unterschiedlicher Leistung (abhängig vom Schaltprinzip).

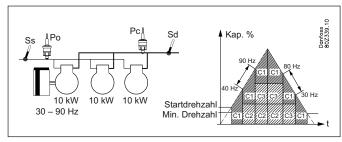
Diese Verdichterkombination arbeitet nach folgendem Schaltprinzip:

- Zyklisch
- Best-Fit

Umgang mit drehzahlgeregelten Verdichtern:

Weitere Informationen zur allgemeinen Handhabung drehzahlgeregelter Verdichter siehe Abschnitt "Verbundtypen".

Zyklusbetrieb – Beispiel


In diesem Fall haben die einstufigen Verdichter dieselbe Größe. Der drehzahlgeregelte Verdichter wird stets als erster gestartet und als letzter gestoppt.

Die einstufigen Verdichter werden nach dem Prinzip "First In First Out" (FIFO) zu- und abgeschaltet, um einen Betriebsstundenausgleich zu gewährleisten.

Der drehzahlgeregelte Verdichter wird dazu verwendet, Leistungsabfälle zwischen den Einstufen-Verdichtern auszugleichen.

Beispiel:

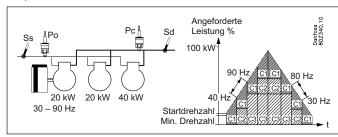
Steigende Leistung:

- Der drehzahlgeregelte Verdichter startet, wenn die gewünschte Leistung der Startdrehzahl entspricht.
- Der nachfolgende einstufige Verdichter mit den wenigsten Betriebsstunden wird zugeschaltet, wenn der drehzahlgeregelte Verdichter bei voller Drehzahl (90 Hz) läuft.
- Wenn ein einstufiger Verdichter zugeschaltet wird, vermindert der drehzahlgeregelte Verdichter die Drehzahl (40 Hz) entsprechend der Leistung des einstufigen Verdichters.

Abfallende Leistung:

- Der nachfolgende einstufige Verdichter mit den meisten Betriebsstunden wird abgeschaltet, wenn der drehzahlgeregelte Verdichter die Mindestdrehzahl (30 Hz) erreicht hat.
- Wenn ein einstufiger Verdichter abgeschaltet wird, erhöht der drehzahlgeregelte Verdichter die Drehzahl (80 Hz) entsprechend der Leistung des einstufigen Verdichters.
- Der drehzahlgeregelte Verdichter ist der letzte, der abgeschaltet wird, wenn die Bedingungen hierfür erfüllt sind.

Best-Fit - Beispiel:


In diesem Fall haben mindestens zwei der Einstufen-Verdichter eine unterschiedliche Größe.

Der drehzahlgeregelte Verdichter wird stets als erster gestartet und als letzter gestoppt.

Der Leistungsverteiler schaltet die einstufigen Verdichter zu und ab, um die bestmögliche Leistungsanpassung und damit möglichst geringe Leistungssprünge zu gewährleisten.

Der drehzahlgeregelte Verdichter wird dazu verwendet, Leistungsabfälle zwischen den Einstufen-Verdichtern auszugleichen.

Beispiel:

Steigende Leistung:

- Der drehzahlgeregelte Verdichter startet, wenn die gewünschte Leistung der Startdrehzahl entspricht.
- Der kleinste einstufige Verdichter wird zugeschaltet, wenn der drehzahlgeregelte Verdichter bei voller Drehzahl (90 Hz) läuft.
- Wenn der drehzahlgeregelte Verdichter wieder die höchste Drehzahl (90 Hz) erreicht hat, wird der kleinste einstufige Verdichter (C2) ab- und der große einstufige Verdichter (C3) zugeschaltet.
- Wenn der drehzahlgeregelte Verdichter wieder die höchste Drehzahl (90 Hz) erreicht hat, wird der kleinste einstufige Verdichter (C2) wieder zugeschaltet.
- Beim Zuschalten des Einstufen-Verdichters wird die Drehzahl des drehzahlgeregelten Verdichters (40 Hz) entsprechend der zugeschalteten Leistung vermindert.

Abfallende Leistung:

- Der kleine einstufige Verdichter wird abgeschaltet, wenn der drehzahlgeregelte Verdichter die Mindestdrehzahl (30 Hz) erreicht hat.
- Wenn der drehzahlgeregelte Verdichter wieder die Mindestdrehzahl (30 Hz) erreicht hat, wird der kleinste einstufige Verdichter (C2) ab- und der große einstufige Verdichter (C3) zugeschaltet.
- Wenn der drehzahlgeregelte Verdichter wieder die Mindestdrehzahl (30 Hz) erreicht hat, wird der große einstufige Verdichter (C3) ab- und der kleine einstufige Verdichter (C2) wieder zugeschaltet.
- Wenn der drehzahlgeregelte Verdichter wieder die Mindestdrehzahl (30 Hz) erreicht hat, wird der kleine einstufige Verdichter (C2) zugeschaltet.
- Der drehzahlgeregelte Verdichter ist der letzte, der abgeschaltet wird, wenn die Bedingungen hierfür erfüllt sind.
- Wenn die Leistung eines einstufigen Verdichters abgeschaltet wird, erhöht der drehzahlgeregelte Verdichter die Drehzahl (80 Hz) entsprechend der abgeschalteten Leistung.

$\label{eq:Verdichteranwendung 6 - 1} Verdichteranwendung 6 - 1 \times Drehzahlregelung + 1 \times Leistungsstufe + Einstufige Verdichter$

Der Regler kann einen drehzahlgeregelten Verdichter und einen Verdichter mit Leistungstufe kombinieren sowie mehrere einstufige Verdichter derselben Größe betreiben.

Der Vorteil bei dieser Kombination besteht darin, dass der variable Teil des drehzahlgeregelten Verdichters nur groß genug sein muss, um die nachfolgenden Entlastungsventile zu decken, damit eine Leistungskurve ohne Leistungsabfälle erreicht wird.

Voraussetzungen für die Nutzung dieser Verdichteranwendung: Ein drehzahlgeregelter Verdichter, der eine andere Größe als die nachfolgenden Verdichter aufweist.

Ein Verdichter mit Leistungsstufen, die eine andere Größe haben können und über Leistungsstufe(n) verfügt (max. 3).

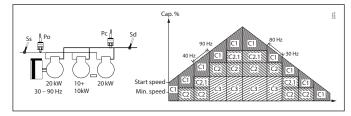
Die Stufen der leistungsgeregelten Verdichter haben die gleiche Größe. Die Hauptstufe kann eine andere Größe als die Leistungsstufen haben, z. B. 50 %, 25 % und 25 %.

Diese Verdichterkombination arbeitet nach folgendem Schaltprinzip:

Zyklisch

 ${\it Umgang\ mit\ drehzahlgeregelten\ Verdichtern}$

Weitere Informationen zur allgemeinen Handhabung drehzahlgeregelter Verdichter siehe Abschnitt "Verbundarten.


Zyklischer Betrieb – Beispiel

Der drehzahlgeregelte Verdichter wird stets als erster gestartet und als letzter abgeschaltet.

Der Verdichter mit Leistungsstufen wird als zweiter gestartet und als vorletzter abgeschaltet.

Die feste Stufe wird nach dem First-In-First-Out-Prinzip ein- und ausgeschaltet, um die Betriebsstunden auszugleichen. Der drehzahlgeregelte Verdichter wird eingesetzt, um die Kapazitätslücken zwischen den Leistungsstufen/Hauptstufen zu füllen.

Beispiel:

Steigende Leistung:

Der drehzahlgeregelte Verdichter startet, wenn die geforderte Leistung der Startdrehzahl entspricht.

Die Hauptstufe des leistungsgeregelten Verdichters (C2) wird zugeschaltet, wenn der drehzahlgeregelte Verdichter bei voller Drehzahl (90 Hz) läuft. Die Leistungsstufen (C2.1) werden schrittweise zugeschaltet, wenn der drehzahlgeregelte Verdichter wieder die höchste Drehzahl (90 Hz) erreicht hat.

Die Hauptstufe des stufigen Verdichters (C3) wird zugeschaltet, wenn der drehzahlgeregelte Verdichter wieder die höchste Drehzahl (90 Hz)

Die Leistungsstufen werden schrittweise zugeschaltet, wenn der drehzahlgeregelte Verdichter wieder die höchste Drehzahl (90 Hz)

Bei Zuschaltung der Hauptstufe oder der Leistungsstufen wird die Drehzahl des drehzahlgeregelten Verdichters (40 Hz) entsprechend der zugeschalteten Leistung vermindert.

Abnehmende Leistung:

Der leistungsgeregelte Verdichter (C2) schaltet eine Leistungstufe ab, wenn der drehzahlgeregelte Verdichter die Mindestdrehzahl (30 Hz) erreicht hat.

- Wenn der drehzahlgeregelte Verdichter wieder die Mindestdrehzahl (30 Hz) erreicht und der stufig leistungsgeregelte Verdichter die Mindestleistung erreicht hat, wird der Verdichter mit der Grundstufe abgeschaltet.
- Die Leistungstufe schaltet den leistungsgeregelten Verdichter (C2.1) ein, um die abgegebene Leistung zu kompensieren, und die variable Drehzahlanpassung reagiert entsprechend zur geforderten Leistung.
- Wenn der drehzahlgeregelte Verdichter wieder die Mindestdrehzahl (30 Hz) erreicht, wird eines Stufe des leistungsgeregelten Verdichters (C2) abgeschaltet.
- Wenn der drehzahlgeregelte Verdichter wieder die Mindestdrehzahl (30 Hz) erreicht hat, wird die Hauptstufe des leistungsgeregelten Verdichters mit den meisten Betriebsstunden (C2) abgeschaltet.
- Wenn der drehzahlgeregelte Verdichter wieder die Mindestdrehzahl (30 Hz) erreicht hat, wird die Hauptstufe des letzten leistungsgeregelten Verdichters (C3) abgeschaltet.
- Der drehzahlgeregelte Verdichter ist der letzte, der abgeschaltet wird, wenn die Bedingungen hierfür erfüllt sind.

Verdichteranwendung 7 - 1 x Drehzahlregelung + Entlastung

Der Regler ist in der Lage, einen drehzahlgeregelten Verdichter kombiniert mit mehreren leistungsgeregelten Verdichtern identischer Größe und mit derselben Anzahl Entlastungen zu regeln.

Der Vorteil bei dieser Kombination besteht darin, dass der variable Teil des drehzahlgeregelten Verdichters nur groß genug sein muss, um die nachfolgenden Entlastungsventile zu decken, damit eine Leistungskurve ohne Leistungsabfälle erreicht wird.

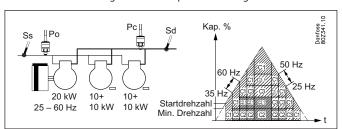
Voraussetzungen für die Nutzung dieser Verdichteranwendung:

- Ein drehzahlgeregelter Verdichter, der eine andere Größe als die nachfolgenden Verdichter aufweist.
- Die leistungsgeregelten Verdichter müssen dieselbe Größe und dieselbe Anzahl Entlastungsventile haben (max. 3).
- Die Hauptstufe der leistungsgeregelten Verdichter hat dieselbe Größe.
- Die Hauptstufe kann eine andere Größe als die Entlastungsventile aufweisen, z. B. 50 %, 25 % und 25 %.

Diese Verdichterkombination arbeitet nach folgendem Schaltprinzip:

Zyklisch

Umgang mit drehzahlgeregelten Verdichtern:


Weitere Informationen zur allgemeinen Handhabung drehzahlgeregelter Verdichter siehe Abschnitt "Verbundtypen".

Zyklusbetrieb - Beispiel

Der drehzahlgeregelte Verdichter wird stets als erster gestartet und als letzter gestoppt.

Die leistungsgeregelten Verdichter werden nach dem Prinzip "First In First Out" (FIFO) zu- und abgeschaltet, um einen Betriebsstundenausgleich zu gewährleisten.

Der drehzahlgeregelte Verdichter dient dazu, plötzliche Leistungsabfälle zwischen den Entlastungsventilen/Hauptstufen auszugleichen.

Steigende Leistung:

- Der drehzahlgeregelte Verdichter startet, wenn die gewünschte Leistung der Startdrehzahl entspricht.
- Die Hauptstufe des leistungsgeregelten Verdichters mit den wenigsten Betriebsstunden (C1) wird zugeschaltet, wenn der drehzahlgeregelte Verdichter bei voller Drehzahl (60 Hz) läuft.
- Die Entlastungsventile werden allmählich zugeschaltet, wenn der drehzahlgeregelte Verdichter wieder die höchste Drehzahl (60 Hz) erreicht hat.
- Die Hauptstufe des letzten leistungsgeregelten Verdichters (C2) wird zugeschaltet, wenn der drehzahlgeregelte Verdichter wieder die höchste Drehzahl (60 Hz) erreicht hat.
- Die Entlastungsventile werden allmählich zugeschaltet, wenn der drehzahlgeregelte Verdichter wieder die höchste Drehzahl (60 Hz) erreicht hat.
- Bei Zuschaltung der Hauptstufe oder der Entlastungsventile wird die Drehzahl des drehzahlgeregelten Verdichters (35 Hz) entsprechend der zugeschalteten Leistung vermindert.

Abfallende Leistung:

- Der leistungsgeregelte Verdichter mit den meisten Betriebsstunden (C2) schaltet ein Entlastungsventil ab, wenn der drehzahlgeregelte Verdichter die Mindestdrehzahl (25 Hz) erreicht hat.
- Wenn der drehzahlgeregelte Verdichter wieder die Mindestdrehzahl (25 Hz) erreicht hat, wird das Entlastungsventil des nächsten drehzahlgeregelten Verdichters (C3) abgeschaltet.
- Wenn der drehzahlgeregelte Verdichter wieder die Mindestdrehzahl (25 Hz) erreicht hat, wird die Hauptstufe des leistungsgeregelten Verdichters mit den meisten Betriebsstunden (C2) abgeschaltet.
- · Wenn der drehzahlgeregelte Verdichter wieder die Mindestdrehzahl (25 Hz) erreicht hat, wird die Hauptstufe des letzten leistungsgeregelten Verdichters (C3) abgeschaltet.
- Der drehzahlgeregelte Verdichter ist der letzte, der abgeschaltet wird, wenn die Bedingungen hierfür erfüllt sind.
- Beim Abschalten der Hauptstufe oder der Entlastungsventile wird die Drehzahl des drehzahlgeregelten Verdichters entsprechend der abgeschalteten Leistung erhöht (50 Hz).

Verdichteranwendung 8 – 2 x Drehzahlregelung + Einstufen-Verdichter

Der Regler ist in der Lage, zwei drehzahlgeregelte Verdichter mit mehreren einstufigen Verdichtern gleicher oder unterschiedlicher Größe (je nach Schaltprinzip) zu regeln.

Der Vorteil beim Einsatz zweier drehzahlgeregelter Verdichter besteht darin, dass man eine sehr geringe Leistung erreichen kann, was bei geringen Belastungen günstig ist. Ferner verfügt man über einen sehr großen, variablen Regelungsbereich.

Voraussetzungen für die Nutzung dieser Verdichteranwendung:

- Zwei drehzahlgeregelte Verdichter, die eine andere Größe als die nachfolgenden einstufigen Verdichter aufweisen können.
- Die drehzahlgeregelten Verdichter können dieselbe Größe oder unterschiedliche Größen haben (je nach Wahl des Schaltprinzips).
- · Dasselbe Frequenzband für beide drehzahlgeregelten Verdichter.
- Einstufige Verdichter derselben oder unterschiedlicher Größe (je nach Schaltprinzip).

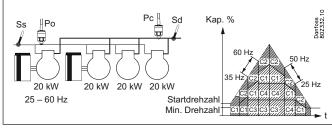
Diese Verdichterkombination arbeitet nach folgendem Schaltprinzip:

- Zyklisch
- · Best-Fit

Umgang mit drehzahlgeregelten Verdichtern:

Weitere Informationen zur allgemeinen Handhabung drehzahlgeregelter Verdichter siehe Abschnitt "Verbundtypen".

Zyklusbetrieb – Beispiel


In diesem Fall haben die drehzahlgeregelten Verdichter dieselbe Größe. Die Einstufen-Verdichter sollten ebenfalls dieselbe Größe haben.

Der drehzahlgeregelte Verdichter wird stets als erster gestartet und als letzter gestoppt.

Die übrigen Verdichter werden gemäß Betriebszeit ("First In First Out"-Prinzip) zu- und abgeschaltet.

Der drehzahlgeregelte Verdichter wird dazu verwendet, Leistungsabfälle zwischen den nachfolgenden Einstufen-Verdichtern auszugleichen.

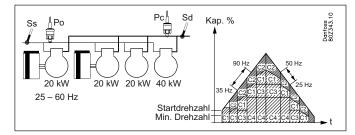
Beispiel:

Steigende Leistung:

- Der drehzahlgeregelte Verdichter mit den wenigsten Betriebsstunden (C1) startet, wenn die gewünschte Leistung der Startdrehzahl entspricht.
- Der nachfolgende drehzahlgeregelte Verdichter C2 wird zugeschaltet, wenn der erste drehzahlgeregelte Verdichter (C1) die höchsten Drehzahl (60 Hz) erreicht hat, sodass beide Verdichter parallel laufen.
- Wenn die beiden drehzahlgeregelten Verdichter die volle Drehzahl (60 Hz) erreicht haben, wird der einstufige Verdichter mit den wenigsten Betriebsstunden (C3) zugeschaltet.
- Wenn die beiden drehzahlgeregelten Verdichter wieder die volle Drehzahl (60 Hz) erreicht haben, wird der letzte einstufige Verdichter (C4) zugeschaltet.
- Beim Zuschalten einstufiger Verdichter wird die Drehzahl der drehzahlgeregelten Verdichter entsprechend der zugeschalteten Leistung vermindert (35 Hz).

Abfallende Leistung:

- Der einstufige Verdichter mit den meisten Betriebsstunden (C3) wird abgeschaltet, wenn die drehzahlgeregelten Verdichter die Mindestdrehzahl (25 Hz) erreicht haben.
- Wenn die beiden drehzahlgeregelten Verdichter wieder die Mindestdrehzahl (25 Hz) erreicht haben, wird der letzte einstufige Verdichter (C4) abgeschaltet.
- Wenn die beiden drehzahlgeregelten Verdichter wieder die Mindestdrehzahl (25 Hz) erreicht haben, wird der drehzahlgeregelte Verdichter mit den meisten Betriebsstunden (C1) abgeschaltet.
- Der letzte drehzahlgeregelte Verdichter (C2) wird abgeschaltet, wenn die Bedingungen hierfür erfüllt sind.
- Beim Abschalten einstufiger Verdichter wird die Drehzahl der drehzahlgeregelten Verdichter entsprechend der abgeschalteten Leistung erhöht (50 Hz).


Best-Fit - Beispiele

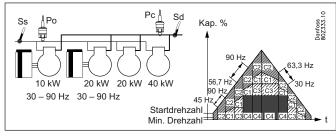
In diesem Fall haben entweder die beiden drehzahlgeregelten Verdichter oder die nachfolgenden Einstufen-Verdichter unterschiedliche Größen. Die drehzahlgeregelten Verdichter werden stets als erste gestartet und als letzte gestoppt.

Zur optimalen Leistungsanpassung schaltet der Leistungsverteiler sowohl drehzahlgeregelte als auch einstufige Verdichter zu und ab, um die bestmögliche Leistungsanpassung (möglichst wenig Leistungssprünge) zu gewährleisten.

Beispiel 1

In diesem Beispiel weisen die drehzahlgeregelten Verdichter dieselbe, die nachfolgenden einstufigen Verdichter dagegen unterschiedliche Größen auf.

Steigende Leistung:


- Der drehzahlgeregelte Verdichter mit den wenigsten Betriebsstunden (C1) startet, wenn die gewünschte Leistung der Startdrehzahl entspricht.
- Wenn der erste drehzahlgeregelte Verdichter (C1) die höchste Drehzahl (60 Hz) erreicht hat, wird der zweite drehzahlgeregelte Verdichter (C2) zugeschaltet, sodass beide parallel laufen.
- Wenn die beiden drehzahlgeregelten Verdichter die volle Drehzahl (60 Hz) erreicht haben, wird der kleine einstufige Verdichter (C3) zugeschaltet.
- Wenn die beiden drehzahlgeregelten Verdichter wieder die volle Drehzahl (60 Hz) erreicht haben, wird der große einstufige Verdichter (C4) zu- und der kleine einstufige Verdichter (C3) abgeschaltet.
- Wenn die beiden drehzahlgeregelten Verdichter wieder die volle Drehzahl (60 Hz) erreicht haben, wird der kleine einstufige Verdichter (C4) wieder zugeschaltet.
- Beim Zuschalten einstufiger Verdichter wird die Drehzahl des drehzahlgeregelten Verdichters entsprechend der zugeschalteten Leistung vermindert (35 Hz).

Abfallende Leistung:

- Der kleine einstufige Verdichter (C3) wird abgeschaltet, wenn die drehzahlgeregelten Verdichter die Mindestdrehzahl (25 Hz) erreicht haben.
- Wenn die beiden drehzahlgeregelten Verdichter wieder die Mindestdrehzahl (25 Hz) erreicht haben, wird der große einstufige Verdichter (C4) ab- und der kleine einstufige Verdichter (C3) zugeschaltet.
- Wenn die beiden drehzahlgeregelten Verdichter wieder die Mindestdrehzahl (25 Hz) erreicht haben, wird der kleine einstufige Verdichter (C3) abgeschaltet.
- Wenn die beiden drehzahlgeregelten Verdichter wieder die Mindestdrehzahl (25 Hz) erreicht haben, wird der drehzahlgeregelte Verdichter mit den meisten Betriebsstunden (C1) abgeschaltet.
- Der letzte drehzahlgeregelte Verdichter (C2) wird abgeschaltet, wenn die Bedingungen hierfür erfüllt sind.
- Beim Abschalten einstufiger Verdichter wird die Drehzahl der drehzahlgeregelten Verdichter entsprechend der abgeschalteten Leistung erhöht (50 Hz).

Beispiel 2:

In diesem Beispiel weisen sowohl die drehzahlgeregelten Verdichter als auch die nachfolgenden einstufigen Verdichter unterschiedliche Größen auf.

Steigende Leistung:

- Der kleinste drehzahlgeregelte Verdichter (C1) startet, wenn die gewünschte Leistung der Startdrehzahl entspricht.
- Wenn der kleinste drehzahlgeregelte Verdichter (C1) die höchste Drehzahl (90 Hz) erreicht hat, wird der große drehzahlgeregelte Verdichter (C2) zu- und der kleine drehzahlgeregelte Verdichter abgeschaltet.
- Wenn der große drehzahlgeregelte Verdichter die höchste Drehzahl (90 Hz) erreicht hat, wird der kleine drehzahlgeregelte Verdichter (C1) wieder zugeschaltet, sodass beide parallel laufen.
- Wenn die beiden drehzahlgeregelten Verdichter die volle Drehzahl (90 Hz) erreicht haben, wird der kleine einstufige Verdichter (C3) zugeschaltet.
- Wenn die beiden drehzahlgeregelten Verdichter wieder die volle Drehzahl (90 Hz) erreicht haben, wird der große einstufige Verdichter (C4) zu- und der kleine einstufige Verdichter (C3) abgeschaltet.
- Wenn die beiden drehzahlgeregelten Verdichter wieder die volle Drehzahl (90 Hz) erreicht haben, wird der kleine einstufige Verdichter (C3) wieder zugeschaltet.
- Beim Zuschalten der einstufigen Verdichter wird die Drehzahl der drehzahlgeregelten Verdichter (56,7 Hz) entsprechend der zugeschalteten Leistung vermindert.

Abfallende Leistung:

- Der kleine einstufige Verdichter (C3) wird abgeschaltet, wenn die drehzahlgeregelten Verdichter die Mindestdrehzahl (30 Hz) erreicht haben.
- Wenn die beiden drehzahlgeregelten Verdichter wieder die Mindestdrehzahl (30 Hz) erreicht haben, wird der große einstufige Verdichter (C4) ab- und der kleine einstufige Verdichter (C3) zugeschaltet.
- Wenn die beiden drehzahlgeregelten Verdichter wieder die Mindestdrehzahl (30 Hz) erreicht haben, wird der kleine einstufige Verdichter (C3) abgeschaltet.
- Wenn die beiden drehzahlgeregelten Verdichter wieder die Mindestdrehzahl (30 Hz) erreicht haben, wird der kleine drehzahlgeregelte Verdichter (C1) abgeschaltet.
- Wenn der große drehzahlgeregelte Verdichter die Mindestdrehzahl (30 Hz) erreicht hat, wird dieser ab- und der kleine drehzahlgeregelte Verdichter (C1) zugeschaltet.
- Der kleine drehzahlgeregelte Verdichter (C1) wird abgeschaltet, wenn die Bedingungen hierfür erfüllt sind.
- Beim Abschalten der einstufigen Verdichter wird die Drehzahl der drehzahlgeregelten Verdichter (63,3 Hz) entsprechend der abgeschalteten Leistung erhöht.

5.13 Anhang B – Alarmtexte

Einstellung	Priorität (werk- seitig)	Alarmtext Englisch	Beschreibung
Sauggruppe			
Low suction pressure P0	Niedrig	Low pressure P0	Unterster Sicherheitsgrenzwert für Saugdruck P0 wurde überschritten
High suction pressure P0	Hoch	High pressure P0	Höchster Alarmgrenzwert für P0 wurde überschritten
Low pressure Psuc-MT	Niedrig	Low pressure Psuc-MT	Unterster Sicherheitsgrenzwert für Saugdruck Psuc wurde überschritten
High pressure Psuc-MT	Hoch	High pressure Psuc-MT	Höchster Alarmgrenzwert für Psuc wurde überschritten
High // consequence Co	NA:st-1	High superheat suction A	Überhitzung in der Saugleitung zu hoch
High/Low superheat Ss	Mittel	Low superheat section A	Überhitzung in der Saugleitung zu niedrig
Lastabwurf	Mittel	Load Shed active	Lastabwurf ist aktiviert
		P0A sensor error	Druckmessumformersignal von P0 ist defekt
		Psuc sensor error	Druckmessumformersignal von Psuc ist defekt
P0 sensor error	Hoch	Sgc sensor error	Temperatursignal vom Gaskühler ist defekt
		Prec sensor error	Druckmessumformersignal vom Sammler ist defekt
		Pgc sensor error	Druckmessumformersignal vom Gaskühler ist defekt
		SsA sensor error	Temperatursignal von Ss Sauggastemperatur ist defekt
		SdA sensor error	Temperatursignal von Sd Druckgastemperatur ist defekt
		Sc3 sensor error	Temperatursignal von Sc3 Luft an Verflüssiger ist defekt
		Heat recovery sensor error	Temperatursignal von Shrec Wärmerückgewinnungsthermostat ist defekt
Misc. sensor error	Mittel	Stw sensor error	Temperatursignal vom Heißwasserkreis ist defekt
		Shr sensor error	Temperatursignal vom Heizkreis ist defekt
		Saux_sensor error	Signal von zusätzlichem Temperaturfühler Saux_ ist defekt
		Paux_ sensor error	Signal von zusätzlichem Druckfühler Paux_ ist defekt
Alle Verdichter			1 - 2
Common safety	Hoch	Common compr. Safety cutout	Alle Verdichter wurden am gemeinsamen Sicherheitseingang abgeschaltet
		Comp. X oil pressure cut out	Verdichter Nr. X wurde an Öldrucksicherheit abgeschaltet
Comp. 1 safety		Comp. X over current cut out	Verdichter Nr. X wurde an Überstromsicherheit abgeschaltet
Comp. 2 safety		Comp. 1 motor prot. cut out	Verdichter Nr. X wurde an Motorschutzsicherheit abgeschaltet
Comp. 3 safety	Mittel	Comp. 1 disch. Temp cut out	Verdichter Nr. X wurde an Druckgastemperatur-Sicherheit abgeschaltet
Campa V anfatra		Comp. 1 disch. Press. Cut out	Verdichter Nr. X wurde an Heißgasdruck-Sicherheit abgeschaltet
Comp. X safety		Comp. 1 General safety cut out	Verdichter Nr. X wurde an Allgemeine Sicherheit abgeschaltet
VSD safety	Mittel	Comp. 1 FCD safety error	Variable Drehzahlregelung für Verdichter X wurde an Sicherheit abgeschaltet
Separator alarms		Low oil in separator x	Ölstand in Ölabscheider Nr. X zu niedrig
	NA:se-1	No oil separated sep. X	Kein Öl in Ölabscheider Nr. X
	Mittel	To high oil in separator X	Ölstand in Ölabscheider Nr. X zu hoch
		Remaining oil separator X	Öl in Ölabscheider Nr. X kann nicht vollständig abgelassen werden
Receiver alarm	AATT I	Oil recv. high level	Ölstand in Sammler zu hoch
	Mittel	Oil recv. low level	Ölstand in Sammler zu niedrig
Rec. high pressure	Mittel	Recv. High pressure alarm	Druck in Sammler zu hoch
Rec. low pressure	Mittel	Recv. Low pressure alarm	Druck in Sammler zu niedrig
Rec. High liquid level	Hoch	Rec. High liquid level alarm	Flüssigkeitsstand im Sammler ist zu hoch
Rec. Low liquid level	Hoch	Rec. Low liquid level alarm	Flüssigkeitsstand im Sammler ist zu niedrig
Verflüssiger			
High Sd temp.	Hoch	High disch. temp. SdA	Sicherheitsgrenze für Druckgastemperatur wurde überschritten
High Pc pressure	Hoch	High pressure Pc	Höchster Sicherheitsgrenzwert für Verflüssigungsdruck Pc wurde überschritten

D /67.6		PcA sensor error	Druckmessumformersignal von Pc defekt	
Pc/S7 Sensor error	Hoch	S7A sensor error	Temperatursignal für S7 Medientemperaturfühler ist defekt	
		Fan Alarm 1	Lüfter Nr. X wurde über Sicherheitseingang als defekt gemeldet	
Fan/VSD safety	Mittel	Fan VSD alarm	Variable Drehzahlregelung für Verflüssigerlüfter wurde an Sicherheit abgeschaltet	
Verschiedene Alarme				
Standby mode	Mittel	Control stopped, MainSwitch=OFF	Die Regelung wurde über die Einstellung "Hauptschalter" = AUS oder über den externen Hauptschalter gestoppt	
Thermostat X – Low temp. alarm	Niedrig	Thermostat X – Low alarm	Die Temperatur für Thermostat Nr. X liegt schon länger als die eingestellte Verzögerungszeit unter dem untersten Alarmgrenzwert	
Thermostat X – High temp. alarm	Niedrig	Thermostat X – High alarm	Die Temperatur für Thermostat Nr. X liegt schon länger als die eingestellte Verzögerungszeit über dem höchsten Alarmgrenzwert	
Pressostat X – Low pressure alarm	Niedrig	Pressostat X – Low alarm	Der Druck für Druckschalter Nr. X liegt schon länger als die eingestellte Verzögerungszeit unter dem untersten Alarmgrenzwert	
Pressostat X – alarm limit high pressure	Niedrig	Pressostat X – High alarm	Der Druck für Druckschalter Nr. X liegt schon länger als die eingestellte Verzögerungszeit über dem höchsten Alarmgrenzwert	
Voltage input X – Low alarm	Niedrig	Analogue input X – Low alarm	Das Spannungssignal liegt schon länger als die eingestellte Verzögerungszeit unter dem untersten Alarmgrenzwert	
Voltage input X – High alarm	Niedrig	Analogue input X – High alarm	Das Spannungssignal liegt schon länger als die eingestellte Verzögerung- szeit über dem höchsten Alarmgrenzwert	
User def. alarm text	Niedrig	Custom alarm X -define text	Alarm an allgemeinem Alarmeingang DI X	
No flow	Hoch	Flow switch alarm	Es findet kein Durchfluss im Heizkreislauf statt. Pumpe überprüfen	
Boiling alarm	Hoch	Boiling alarm	Die Temperatur im Heizkreislauf ist zu hoch	
Receiver alarm	Hoch	Prec	Alarm vom Sammler	
External power loss	Hoch	External power loss	Versorgung ist unterbrochen. Es wird Alarm gegeben. Alle anderen Alarme stoppen.	
Steppervalve	Hoch	Stepper – Vhp, Vrec, PI, Vliq. Open coil, Shorted output, Error, Power failure	Die Versorgung des entsprechenden Ventils überprüfen. Bei Fehler oder Stromausfall: Versorgungsspannung am Schrittmotor überprüfen.	
Systemalarme				
Bei Systemalarmen kann die	Alarmpriorit	ät nicht geändert werden.		
Control mode	Niedrig	Manual comp. cap. Control A	Die Verdichterleistungsregelung läuft im manuellen Betrieb	
Control mode	Niedrig	Manual cond. cap. Control A	Verflüssigerleistungsregelung läuft im manuellen Betrieb	
	Mittel	Time has not been set	Die Zeit wurde nicht eingestellt	
	Mittel	System Critical exception	Irreparabler kritischer Systemfehler – Regler austauschen	
	Mittel	System alarm exception	Ein geringfügiger Systemfehler ist aufgetreten – Regler ausschalten	
	Mittel	Alarm destination disabled	Wenn dieser Alarm aktiviert wird, wurde die Alarmübertragung zum Alarmempfänger deaktiviert. Prüfen und abwarten. Wenn dieser Alarm gelöscht wird, wurde die Alarmübertragung zum Alarmempfänger wieder aktiviert.	
	Mittel	Alarm route failure	Alarme können nicht an den Alarmempfänger übertragen werden – Kommunikation überprüfen	
	Hoch	Alarm router full	Überlauf des internen Alarmpuffers – dies kann auftreten, wenn der Regler die Alarme nicht an den Alarmempfänger senden kann. Kommunikation zwischen Regler und Systemeinheit überprüfen.	
	Mittel	Device is restarting	Der Regler wird nach Flashaktualisierung der Software neu gestartet	
	Mittel	Common IO Alarm	Kommunikationsstörung zwischen Reglermodul und Erweiterungsmodulen – die Störung muss so bald wie möglich behoben werden	
Manuelle Regelung				
	Niedrig	MAN CONTROL	Die betreffende Funktion wurde über die Servicetool-Software des AK-ST 500 in den manuellen Regelmodus versetzt	
	Niedrig	Man set	Der betreffende Ausgang wurde über die Servicetool-Software des AK-ST 500 in den manuellen Regelmodus versetzt	
	Niedrig	Man control	Der betreffende Ausgang wurde über die Servicetool-Software des AK-ST 500 in den manuellen Regelmodus versetzt	

Bitte bei der Installation beachten:

Unbeabsichtigte Beschädigungen, eine unsachgemäße Installation und/oder ungünstige Bedingungen vor Ort können zu Fehlfunktionen der Regelung und schließlich zum Ausfall der Anlage führen.

Unsere Produkte weisen alle möglichen Schutzvorrichtungen auf, um diese Fehler zu verhindern. Jedoch kann zum Beispiel eine unsachgemäße Installation immer noch Probleme verursachen. Elektronische Regelungen sind kein Ersatz für gute, vorschriftsgemäße technische Praxis.

Danfoss übernimmt keine Haftung für Produkte oder Anlagenkomponenten, die durch die oben genannten Ursachen beschädigt werden. Es obliegt dem Installateur, die Installation sorgfältig zu prüfen und die erforderlichen Schutzvorrichtungen vorzusehen.

Besonders hervorgehoben werden soll hier die Wichtigkeit der Signale, die dem Regler ein Ausschalten des Verdichters anzeigen ebenso wie die Notwendigkeit, Flüssigkeitssammler auf der Saugseite von Verdichtern zu installieren.

Wenden Sie sich für eine weiterführende Beratung oder Ähnliches an Ihren Danfoss-Vertriebspartner vor Ort. Er wird Ihnen gerne behilflich sein.

Danfoss GmbH, Deutschland: Climate Solutions • danfoss.de • +49 69 8088 5400 • cs@danfoss.de **Danfoss Ges.m.b.H., Österreich:** Climate Solutions • danfoss.at • +43 720548000 • cs@danfoss.at **Danfoss AG, Schweiz:** Climate Solutions • danfoss.ch • +41 615100019 • cs@danfoss.ch

Alle Informationen, einschließlich, aber nicht beschränkt auf Informationen zur Auswahl von Produkten, ihrer Anwendung bzw. ihrem Einsatz, zur Produktgestaltung, zum Gewicht, den Abmessungen, der Kapazität oder zu allen anderen technischen Daten von Produkten in Produkthandbüchern, Katalogbeschreibungen, Werbungen usw., die schriftlich, mündlich, elektronisch, online oder via Download erteilt werden, sind als rein informativ zu betrachten, und sind nur dann und in dem Ausmaß verbindlich, als auf diese in einem Kostenvoranschlag oder in einer Auftragsbestätigung explizit Bezug genommen wird. Danfoss übernimmt keine Verantwortung für mögliche Fehler in Katalogen, Brosschüren, Videos und anderen Drucksachen. Danfoss behält sich das Recht vor, ohne vorherige Bekanntmachung Änderungen an seinen Produkten vorzunehmen. Dies gilt auch für bereits in Auftrag genommene, aber nicht gelieferte Produkte, sofern solche Anpassungen ohne substanzielle Änderungen der Form, Tauglichkeit oder Funktion des Produkts möglich sind.
Alle in dieser Publikation enthaltenen Warenzeichen sind Eigentum von Danfoss A/S oder Danfoss-Gruppenunternehmen. Danfoss und das Danfoss Logo sind Warenzeichen der Danfoss A/S. Alle Rechte vorbehalten.